Solveeit Logo

Question

Question: The domain of definition of the function \[y = \frac{1}{\log_{10}(1 - x)} + \sqrt{x + 2}\]...

The domain of definition of the function

y=1log10(1x)+x+2y = \frac{1}{\log_{10}(1 - x)} + \sqrt{x + 2}

A

(−3, −2) excluding −2.5

B

[0, 1] excluding 0.5

C

[-2, 1] excluding 0

D

None of these

Answer

2,1-2, 1 excluding 0

Explanation

Solution

y=1log10(1x)+x2y = \frac{1}{\log_{10}(1 - x)} + \sqrt{x - 2}

Y = f(x) + g(x)

Then domain of given function is Df \capDg

Now, for domain of f(x) = 1log10(1x)\frac{1}{\log_{10}(1 - x)}

We know it is defined only when 1 – x > 0 and 1 - x ≠ 1

⇒ x < 1 and x ≠ 0

∴ Df = (−∞, 1) − {0}

For domain of g(x) = x+2\sqrt{x + 2}

x + 2 ≥ 0 ⇒ x ≥ - 2

Dg = (−2, ∞)

∴ Common domain is [−2, 1] − {0}