Question
Mathematics Question on Functions
The domain and range of the function f=\left\\{\left(\frac{1}{1-x^{2}}\right) : x \in R, x \ne \pm 1\right\\} are respectively
A
R-\left\\{-1, 1\right\\}, \left(-\infty, 0\right) \cup [1, \infty)
B
R,(−∞,0)∪[1,∞)
C
R,[1,∞)
D
None of these
Answer
R-\left\\{-1, 1\right\\}, \left(-\infty, 0\right) \cup [1, \infty)
Explanation
Solution
We have, f(x)=1−x21 Clearly, f(x) is defined for all x∈R except for which x2−1=0 i.e., x=±1. Hence, Domain of f=R-\left\\{-1,1\right\\}. Let f(x)=y. Then, 1−x21=y ⇒1−x2=y1 ⇒x2=1−y1=yy−1 ⇒x=±y−0y−1 Clearly, x will take real values, if y−0y−1≤0 ⇒y<0 or y≥1 ⇒y∈(−∞,0)∪[1,∞) Hence, range (f)=(−∞,0)∪[1,∞)