Solveeit Logo

Question

Mathematics Question on Functions

The domain and range of the function f=\left\\{\left(\frac{1}{1-x^{2}}\right) : x \in R, x \ne \pm 1\right\\} are respectively

A

R-\left\\{-1, 1\right\\}, \left(-\infty, 0\right) \cup [1, \infty)

B

R,(,0)[1,)R, \left(-\infty, 0\right) \cup [1, \infty)

C

R,[1,)R, [1, \infty)

D

None of these

Answer

R-\left\\{-1, 1\right\\}, \left(-\infty, 0\right) \cup [1, \infty)

Explanation

Solution

We have, f(x)=11x2f\left(x\right)=\frac{1}{1-x^{2}} Clearly, f(x)f\left(x\right) is defined for all xRx \in R except for which x21=0x^{2}-1=0 i.e., x=±1x = \pm 1. Hence, Domain of f=R-\left\\{-1,1\right\\}. Let f(x)=yf\left(x\right)=y. Then, 11x2=y\frac{1}{1-x^{2}}=y 1x2=1y\Rightarrow 1-x^{2}=\frac{1}{y} x2=11y=y1y\Rightarrow x^{2}=1-\frac{1}{y}=\frac{y-1}{y} x=±y1y0\Rightarrow x=\pm\sqrt{\frac{y-1}{y-0}} Clearly, xx will take real values, if y1y00\frac{y-1}{y-0} \le 0 y<0\Rightarrow y < 0 or y1y \ge 1 y(,0)[1,)\Rightarrow y \in\left(-\infty, 0\right) \cup [1, \infty) Hence, range (f)=(,0)[1,)\left(f\right)=\left(-\infty, 0\right) \cup [1, \infty)