Solveeit Logo

Question

Question: The distances from the foci of \(P(x_{1},y_{1})\) on the ellipse \(\frac{x^{2}}{9} + \frac{y^{2}}{25...

The distances from the foci of P(x1,y1)P(x_{1},y_{1}) on the ellipse x29+y225=1\frac{x^{2}}{9} + \frac{y^{2}}{25} = 1are

A

4±54y14 \pm \frac{5}{4}y_{1}

B

5±45x15 \pm \frac{4}{5}x_{1}

C

5±45y15 \pm \frac{4}{5}y_{1}

D

None

Answer

5±45y15 \pm \frac{4}{5}y_{1}

Explanation

Solution

For the given ellipse b>a,b > a, so the two foci lie on y-axis and their coordinates are (0,±be)(0, \pm be),

Where b=5,a=3b = 5,a = 3. So e=1a2b2=1925=45e = \sqrt{1 - \frac{a^{2}}{b^{2}}} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}

The focal distances of a point (x1,y1)(x_{1},y_{1}) on the ellipsex2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, Where b2>a2b^{2} > a^{2}are given by b±ey1b \pm ey_{1}. So, Required distances are b±ey1=5±45y1b \pm ey_{1} = 5 \pm \frac{4}{5}y_{1}