Solveeit Logo

Question

Physics Question on Acceleration

The distance xx covered by a particle varies with time tt as x2=2t2+6i+1.x^{2}=2t^{2} +6i +1.. Its acceleration varies with xx as

A

xx

B

x2x^{2}

C

x1x^{-1}

D

x3x^{-3}

Answer

x3x^{-3}

Explanation

Solution

Given, x2=2t2+6t+1(i)x^{2}=2 t^{2}+6 t+1\,\,\,\,\dots(i)
Differentiating E (i) w.r.t. tt, we get
2xdxdt=4t+t2 x \frac{d x}{d t}=4 t+t
2xv=4t+62 x v=4 t+6 (v=dxdt)\left(\because v=\frac{d x}{d t}\right)
xv=2t+3(ii)x v=2 t+3\,\,\,\,\,\dots(ii)
Now, again differentiating E (ii) w.r.t. tt, we get
xdvdt+vdxdt=2x\, \frac{d v}{d t}+v \frac{d x}{d t}=2
xa+vv=2(a=dvdt and v=dxdt)x \cdot a+v \cdot v=2 \, \left(\because a=\frac{d v}{d t} \text { and } v=\frac{d x}{d t}\right)
xa+v2=2(iii)x a+v^{2}=2 \,\,\,\,\,\dots(iii)
Here, v2=4t2+12t+9x2v^{2}=\frac{4 t^{2}+12 t+9}{x^{2}}
v2=2(2t2+6t+1)+7x2v^{2}=\frac{2\left(2 t^{2}+6 t+1\right)+7}{x^{2}}
v2=2t2+7x2(iv)v^{2}=\frac{2 t^{2}+7}{x^{2}}\,\,\,\,\,\dots(iv)
Put the value of v2v^{2} in E (iii) from E (iv), we get
xa+2x2+7x2=2x a+\frac{2 x^{2}+7}{x^{2}} =2
x3a+2x2+7=2x2x^{3} a+2 x^{2}+7=2 x^{2}
x3a+7=0x^{3} a+7 =0
x3a=7x^{3} a =-7
a=7x3a =\frac{-7}{x^{3}}
Hence, the acceleration varies with x3x^{-3}.