Solveeit Logo

Question

Mathematics Question on Linear Programming Problem and its Mathematical Formulation

The distance of the point whose position vector is 2i^+j^k^\mathbf{2\hat{i} + \hat{j} - \hat{k}} from the plane vector r(i^2j^+4k^)=4\vec{r} \cdot (\hat{i} - 2\hat{j} + 4\hat{k}) = 4 is

A

Distance=Ax+By+Cz+DA2+B2+C2\text{Distance} = \frac{{\left|Ax + By + Cz + D\right|}}{{\sqrt{A^2 + B^2 + C^2}}}
In this case, the position vector of the point is given as v=2i+jk\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} and
the plane is defined by the vector equation r(i2j+4k)=4\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) = 4
Comparing the equation of the plane to the general form Ax+By+Cz+D=0Ax + By + Cz + D = 0, we have:
A=1,B=2,C=4A = 1, B = -2, C = 4, andD=4.D = -4.
Substituting the values into the distance formula, we get:
Distance=(1)(2)+(2)(1)+(4)(1)+(4)12+(2)2+42\text{Distance} = \frac{\left|(1)(2) + (-2)(1) + (4)(-1) + (-4)\right|}{\sqrt{1^2 + (-2)^2 + 4^2}} =22441+4+16=1221=1221=821=\frac{\left|-2 - 2 - 4 - 4\right|}{\sqrt{1 + 4 + 16}} = \frac{\left|-12\right|}{\sqrt{21}} = \frac{12}{\sqrt{21}} = \frac{8}{\sqrt{21}}
Therefore, the correct option is (1) 821\frac{8}{\sqrt{21}}

B

821\frac{-8}{\sqrt{21}}

C

8218\sqrt{21}

D

821- \frac{8}{21}

Answer

Distance=Ax+By+Cz+DA2+B2+C2\text{Distance} = \frac{{\left|Ax + By + Cz + D\right|}}{{\sqrt{A^2 + B^2 + C^2}}}
In this case, the position vector of the point is given as v=2i+jk\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} and
the plane is defined by the vector equation r(i2j+4k)=4\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) = 4
Comparing the equation of the plane to the general form Ax+By+Cz+D=0Ax + By + Cz + D = 0, we have:
A=1,B=2,C=4A = 1, B = -2, C = 4, andD=4.D = -4.
Substituting the values into the distance formula, we get:
Distance=(1)(2)+(2)(1)+(4)(1)+(4)12+(2)2+42\text{Distance} = \frac{\left|(1)(2) + (-2)(1) + (4)(-1) + (-4)\right|}{\sqrt{1^2 + (-2)^2 + 4^2}} =22441+4+16=1221=1221=821=\frac{\left|-2 - 2 - 4 - 4\right|}{\sqrt{1 + 4 + 16}} = \frac{\left|-12\right|}{\sqrt{21}} = \frac{12}{\sqrt{21}} = \frac{8}{\sqrt{21}}
Therefore, the correct option is (1) 821\frac{8}{\sqrt{21}}