Solveeit Logo

Question

Question: The distance of the point \('\theta'\)on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1...

The distance of the point θ'\theta'on the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1from a focus is

A

a(e+cosθ)a(e + \cos\theta)

B

a(ecosθ)a(e - \cos\theta)

C

a(1+ecosθ)a(1 + e\cos\theta)

D

a(1+2ecosθ)a(1 + 2e\cos\theta)

Answer

a(1+ecosθ)a(1 + e\cos\theta)

Explanation

Solution

Focal distance of any point P(x,y)P(x,y) on the ellipse is equal to SP=a+exSP = a + ex. Here x=cosθx = \cos\theta.

Hence, SP=a+aecosθ=a(1+ecosθ)SP = a + ae\cos\theta = a(1 + e\cos\theta)