Question
Mathematics Question on 3D Geometry
The distance of the point Q(0,2,−2) from the line passing through the point P(5,−4,3) and perpendicular to the lines r=(−3i^+2k^)+λ(2i^+3j^+5k^),λ∈R and r=(i^−2j^+k^)+μ(−i^+3j^+2k^),μ∈R is
A
86
B
20
C
54
D
74
Answer
74
Explanation
Solution
A vector in the direction of the required line can be obtained by the cross product of:
i^ 2 −1j^33k^52=−9i^−9j^+9k^
Required line:
r=(5i^−4j^+3k^)+λ(−9i^−9j^+9k^) r=(5i^−4j^+3k^)+λ(1i^+j^−k^)
Now, the distance of (0,2,−2) is:
P.V. of P=(5+λ)i^+(−4+λ)j^+(3−λ)k^ AP=(5+λ)i^+(−6+λ)j^+(5−λ)k^ AP⋅(i^+j^−k^)=0 5+λ−6+λ−5+λ=0⟹λ=2
∣AP∣=(5+λ)2+(−6+λ)2+(5−λ)2 ∣AP∣=49+16+9=74