Solveeit Logo

Question

Mathematics Question on 3D Geometry

The distance of the point (7,2,11)(7, -2, 11) from the line x61=y40=z83\frac{x - 6}{1} = \frac{y - 4}{0} = \frac{z - 8}{3} along the line x52=y13=z56\frac{x - 5}{2} = \frac{y - 1}{-3} = \frac{z - 5}{6}, is:

A

12

B

14

C

18

D

21

Answer

14

Explanation

Solution

To find the distance, we first determine the coordinates of point BB lying on the line given by:

x61=y40=z83\frac{x - 6}{1} = \frac{y - 4}{0} = \frac{z - 8}{3}

Assume:
B=(2λ+7,3λ2,6λ+11)B = (2\lambda + 7, -3\lambda - 2, 6\lambda + 11)

Point BB also lies on the line:

x61=y40=z83\frac{x - 6}{1} = \frac{y - 4}{0} = \frac{z - 8}{3}

Substitute the coordinates of BB:
2λ+7=63λ2=46λ+11=8=02\lambda + 7 = 6 \quad \Rightarrow \quad -3\lambda - 2 = 4 \quad \Rightarrow \quad 6\lambda + 11 = 8 = 0
Solving:

3λ6=0λ=2-3\lambda - 6 = 0 \quad \Rightarrow \quad \lambda = -2

Substituting λ=2\lambda = -2 gives:
B=(3,4,1)B = (3, 4, -1)
To find the distance ABAB between points A=(7,2,11)A = (7, -2, 11) and B=(3,4,1)B = (3, 4, -1):
AB=(73)2+(24)2+(11(1))2AB = \sqrt{(7 - 3)^2 + (-2 - 4)^2 + (11 - (-1))^2}

AB=(4)2+(6)2+(12)2AB = \sqrt{(4)^2 + (-6)^2 + (12)^2}

AB=16+36+144AB = \sqrt{16 + 36 + 144}

AB=196=14AB = \sqrt{196} = 14
Thus, the distance of the point (7,2,11)(7, -2, 11) from the given line is 1414.