Solveeit Logo

Question

Question: The distance of the point \(2 \mathbf { i } + \mathbf { j } - \mathbf { k }\) from the plane \(\...

The distance of the point 2i+jk2 \mathbf { i } + \mathbf { j } - \mathbf { k } from the plane

r.(i2j+4k)=9\mathbf { r } . ( \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } ) = 9 is+

A

1321\frac { 13 } { \sqrt { 21 } }

B

321\frac { 3 } { \sqrt { 21 } }

C

1321\frac { 13 } { 21 }

D

13321\frac { 13 } { 3 \sqrt { 21 } }

Answer

1321\frac { 13 } { \sqrt { 21 } }

Explanation

Solution

We know that the perpendicular distance of a point P with position vector a\mathbf { a } from the plane is given by

.

Here a=2i+jk,n=i2j+4k\mathbf { a } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } , \mathbf { n } = \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } and d=9d = 9.

So, required distance =(2i+jk)(i2j+4k)91+4+16= \frac { | ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \cdot ( \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } ) - 9 | } { \sqrt { 1 + 4 + 16 } }

=224921=1321= \frac { | 2 - 2 - 4 - 9 | } { \sqrt { 21 } } = \frac { 13 } { \sqrt { 21 } }.