Solveeit Logo

Question

Question: The distance of the point (–1, –5, –10) from the point of intersection of the line \(\frac{x - 2}{3}...

The distance of the point (–1, –5, –10) from the point of intersection of the line x23=y+14=z212\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{12} and the plane xy+z=5x - y + z = 5, is

A

10

B

11

C

12

D

13

Answer

13

Explanation

Solution

Any point on the line 3(2m3n)m+mn4(2m3n)n=03 ( - 2 m - 3 n ) m + m n - 4 ( - 2 m - 3 n ) n = 0 is

6m29mn+mn+8mn+12n2=0- 6 m ^ { 2 } - 9 m n + m n + 8 m n + 12 n ^ { 2 } = 0

This lies on 6m212n2=06 m ^ { 2 } - 12 n ^ { 2 } = 0

m22n2=0m ^ { 2 } - 2 n ^ { 2 } = 0 m+2n=0m + \sqrt { 2 } n = 0 i.e., m2n=0m - \sqrt { 2 } n = 0

\thereforePoint is (2,1,2)( 2 , - 1,2 ) . Its distance from (1,5,10)( - 1 , - 5 , - 10 ) is,

=(2+1)2+(1+5)2+(2+10)2\sqrt { ( 2 + 1 ) ^ { 2 } + ( - 1 + 5 ) ^ { 2 } + ( 2 + 10 ) ^ { 2 } }= 9+16+144=13\sqrt { 9 + 16 + 144 } = 13 .