Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

The distance of the point (1, 2, -4) from the line x32=y33=z+56\frac{x-3}{2} = \frac {y-3}{3} = \frac {z+5}{6} is

A

2937\frac {293}{7}

B

2937\frac {\sqrt {293} } {7}

C

29349\frac {293} {49}

D

29349\frac {\sqrt {293} } {49}

Answer

2937\frac {\sqrt {293} } {7}

Explanation

Solution

Let (x32=y33=z+56=t)\left(\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6}=t\right)
(x,y,z)=(2t+3,3t+3,6t5)\Rightarrow(x, y, z)=(2 t+3,3 t+3,6 t-5)
\therefore d.r.?s of the line perpendicular to
(x32=y33=z+56)\left(\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6}\right) and
joining (2t+3,3t+3,6t5)(2 t+3,3 t+3,6 t-5)
and (1,2,4)(1,2,-4) is (2t+2,3t+1,6t1)(2 t+2,3 t+1,6 t-1)
2(2t+2)+3(3t+1)+6(6t1)=0\therefore 2(2 t+2)+3(3 t+1)+6(6 t-1)=0
t=1/49\Rightarrow t =-1 / 49
\therefore Distance =(2t+2)2+(3t+1)2+(6t1)2=\sqrt{(2t+2)^2+(3t+1)^2+(6t-1)^2}
=49t2+2t+6= \sqrt{49t^2+2t+6}
=149249+6=2937= \sqrt{\frac{1}{49}-\frac{2}{49}+6}=\frac{\sqrt{293}}{7}