Solveeit Logo

Question

Mathematics Question on Ellipse

The distance of a focus of the ellipse 9x2+16y2=1449x^2+16y^2 =144 from an end of the minor axis is

A

32\frac{3}{2}

B

3

C

4

D

None of these

Answer

4

Explanation

Solution

Ellipse is x216+y29=1\frac{x^{2}}{16} +\frac{y^{2}}{9} = 1
a2=16,b2=9a^{2}= 16, b^{2}=9. Focus is (ae,0)\left(ae, 0\right) i.e., (4e,0)\left(4e, 0\right)
b2=a2(1e2)b^{2} = a^{2}\left(1-e^{2}\right) gives 916=1e2\frac{9}{16} = 1-e^{2}
e2=1916=716\Rightarrow e^{2}=1 -\frac{9}{16} = \frac{7}{16}
e=74\Rightarrow e= \frac{\sqrt{7}}{4}
One end of mirror axis is B(0,3)B\left(0, 3\right)
Distance of the focus from this end
(4e0)2+(03)2=16e2+9\sqrt{\left(4e-0\right)^{2}+\left(0-3\right)^{2}} = \sqrt{16e^{2}+9}
16×716+9=7+9\sqrt{\frac{16\times7}{16}+9} = \sqrt{7+9}
=16=4= \sqrt{16} = 4