Solveeit Logo

Question

Question: The distance between the points \[\left( {a,b} \right)\] and \[\left( { - a, - b} \right)\] is: (a...

The distance between the points (a,b)\left( {a,b} \right) and (a,b)\left( { - a, - b} \right) is:
(a) a2+b2{a^2} + {b^2}
(b) a2+b2\sqrt {{a^2} + {b^2}}
(c) 0
(d) 2a2+b22\sqrt {{a^2} + {b^2}}

Explanation

Solution

Here, we will use the formula for distance between two points, and simplify the expression to find the distance between the points (a,b)\left( {a,b} \right) and (a,b)\left( { - a, - b} \right), and then choose the correct option.
Formula Used: We will use the following formulas:

  1. Distance formula: The distance dd between two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is given by d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .
  2. Rule of exponents: If two or more numbers with the same base and different exponents are multiplied, the product can be written as ab×ac=ab+c{a^b} \times {a^c} = {a^{b + c}}.

Complete step by step solution:
We will use the distance formula to find the distance between the points (a,b)\left( {a,b} \right) and (a,b)\left( { - a, - b} \right).
Let dd be the distance between the points (a,b)\left( {a,b} \right) and (a,b)\left( { - a, - b} \right).
Substituting x1=a{x_1} = a, y1=b{y_1} = b, x2=a{x_2} = - a, and y2=b{y_2} = - b in the distance formula, d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} , we get
d=(aa)2+(bb)2\Rightarrow d = \sqrt {{{\left( { - a - a} \right)}^2} + {{\left( { - b - b} \right)}^2}}
Subtracting the like terms in the parentheses, we get
d=(2a)2+(2b)2\Rightarrow d = \sqrt {{{\left( { - 2a} \right)}^2} + {{\left( { - 2b} \right)}^2}}
Rewriting the expression (2a)2{\left( { - 2a} \right)^2}, we get
(2a)2=(2a)×(2a) (2a)2=(1)×2a1×(1)×2a1\begin{array}{l} \Rightarrow {\left( { - 2a} \right)^2} = \left( { - 2a} \right) \times \left( { - 2a} \right)\\\ \Rightarrow {\left( { - 2a} \right)^2} = \left( { - 1} \right) \times 2{a^1} \times \left( { - 1} \right) \times 2{a^1}\end{array}
Rearranging the terms, we get
(2a)2=(1)2×2×2×a1×a1\Rightarrow {\left( { - 2a} \right)^2} = {\left( { - 1} \right)^2} \times 2 \times 2 \times {a^1} \times {a^1}
We know that (1)n{\left( { - 1} \right)^n} is equal to 1 if nn is an even number, and is equal to 1 - 1 if nn is an odd number.
Thus, we get
(1)2=1{\left( { - 1} \right)^2} = 1
Therefore, we get
(2a)2=1×2×2×a1×a1\Rightarrow {\left( { - 2a} \right)^2} = 1 \times 2 \times 2 \times {a^1} \times {a^1}
Now by applying rules of exponent, the equation becomes
(2a)2=1×2×2×a1+1 (2a)2=1×2×2×a2\begin{array}{l} \Rightarrow {\left( { - 2a} \right)^2} = 1 \times 2 \times 2 \times {a^{1 + 1}}\\\ \Rightarrow {\left( { - 2a} \right)^2} = 1 \times 2 \times 2 \times {a^2}\end{array}
Multiplying the terms of the expression, we get
(2a)2=4a2\Rightarrow {\left( { - 2a} \right)^2} = 4{a^2}
Rewriting the expression (2b)2{\left( { - 2b} \right)^2}, we get
(2b)2=(2b)×(2b) (2b)2=(1)×2b1×(1)×2b1\begin{array}{l} \Rightarrow {\left( { - 2b} \right)^2} = \left( { - 2b} \right) \times \left( { - 2b} \right)\\\ \Rightarrow {\left( { - 2b} \right)^2} = \left( { - 1} \right) \times 2{b^1} \times \left( { - 1} \right) \times 2{b^1}\end{array}
Rearranging the terms, we get
(2b)2=(1)2×2×2×b1×b1\Rightarrow {\left( { - 2b} \right)^2} = {\left( { - 1} \right)^2} \times 2 \times 2 \times {b^1} \times {b^1}
Simplifying the expression, we get
(2b)2=1×2×2×b1×b1\Rightarrow {\left( { - 2b} \right)^2} = 1 \times 2 \times 2 \times {b^1} \times {b^1}
Rewriting using the rule of exponent ab×ac=ab+c{a^b} \times {a^c} = {a^{b + c}}, we get
(2b)2=1×2×2×b1+1 (2b)2=1×2×2×b2\begin{array}{l} \Rightarrow {\left( { - 2b} \right)^2} = 1 \times 2 \times 2 \times {b^{1 + 1}}\\\ \Rightarrow {\left( { - 2b} \right)^2} = 1 \times 2 \times 2 \times {b^2}\end{array}
Multiplying the terms of the expression, we get
(2b)2=4b2\Rightarrow {\left( { - 2b} \right)^2} = 4{b^2}
Now, substituting (2a)2=4a2{\left( { - 2a} \right)^2} = 4{a^2} and (2b)2=4b2{\left( { - 2b} \right)^2} = 4{b^2} in the equation d=(2a)2+(2b)2d = \sqrt {{{\left( { - 2a} \right)}^2} + {{\left( { - 2b} \right)}^2}} , we get
d=4a2+4b2\Rightarrow d = \sqrt {4{a^2} + 4{b^2}}
Factoring out 4 from the terms, we get
d=4(a2+b2)\Rightarrow d = \sqrt {4\left( {{a^2} + {b^2}} \right)}
Rewriting the expression as a product of square roots, we get
d=4a2+b2\Rightarrow d = \sqrt 4 \sqrt {{a^2} + {b^2}}
d=2a2+b2\Rightarrow d = 2\sqrt {{a^2} + {b^2}}
Therefore, the distance between the points (a,b)\left( {a,b} \right) and (a,b)\left( { - a, - b} \right) is 2a2+b22\sqrt {{a^2} + {b^2}} .

The correct option is option (d).

Note:
We rewrote 4(a2+b2)\sqrt {4\left( {{a^2} + {b^2}} \right)} as 4a2+b2\sqrt 4 \sqrt {{a^2} + {b^2}} . This is because if two square roots are multiplied, then the result is equal to the square of the product of the number inside the root. This means that if x\sqrt x and y\sqrt y are multiplied, then the result is equal to xy\sqrt {xy} .