Solveeit Logo

Question

Mathematics Question on Horizontal and vertical lines

The distance between the parallel lines 9x26xy+y2+18x6y+8=09x^2 - 6xy + y^2 +18x - 6y + 8 = 0 is

A

210\frac{2}{\sqrt{10}}

B

110\frac{1}{\sqrt{10}}

C

410\frac{4}{\sqrt{10}}

D

None of these

Answer

210\frac{2}{\sqrt{10}}

Explanation

Solution

9x26xy+y2+18x6y+8=09x^{2}-6xy+y^{2}+18x-6y+8=0 ((3x2)2×(3x)×y+y2)+6(3xy)+8=0\Rightarrow \left(\left(3x^{2}\right)-2\times \left(3x\right)\times y+y^{2}\right)+6\left(3x-y\right)+8=0 (3xy)2+6(3xy)+8=0\Rightarrow \left(3x-y\right)^{2}+6\left(3x-y\right)+8=0 Let 3xy=z3x - y = z z2+6z+8=0\therefore z^{2}+6z+8=0 z2+4z+2z+8=0\Rightarrow z^{2}+4z+2z+8=0 z(z+4)+2(z+4)=0\Rightarrow z\left(z+4\right)+2\left(z+4\right)=0 (z+2)(z+4)=0\Rightarrow \left(z + 2\right)\left(z + 4\right) = 0 z=2,z=4\Rightarrow z=-2, z=-4 3xy+2=0...(i)3x-y+2=0\,...\left(i\right) or 3xy+4=03x - y + 4 = 0 If P1P_{1} be the distance of line (i)\left(i\right) from the origin, then P1=29+1=210P_{1}=\frac{2}{\sqrt{9+1}}=\frac{2}{\sqrt{10}} Also, if P2P_{2} be the distance of line \left(ii\right) from the origin,then P2=410P_{2}=\frac{4}{\sqrt{10}} So, distance between lines P=P2P1=410210=210P=P_{2}-P_{1}=\frac{4}{\sqrt{10}}-\frac{2}{\sqrt{10}}=\frac{2}{\sqrt{10}}