Solveeit Logo

Question

Mathematics Question on Horizontal and vertical lines

The distance between the pair of parallel lines x2+2xy+y28ax8ay9a2=0 x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0 is :

A

25a2 \sqrt{5} a

B

10a \sqrt{10} a

C

10a10 \, a

D

52a5 \sqrt{2} a

Answer

52a5 \sqrt{2} a

Explanation

Solution

Given equation is
x2+y2+2xy8ax8ay9a2=0x^{2}+y^{2}+2 x y-8 a x-8 a y-9 a^{2}=0
or x2+y2+(4a)2+2xy8ax8ay25a2=0x^{2}+y^{2}+(-4 a)^{2}+2 x y-8 a x-8 a y-25 a^{2}=0
or (x+y4a)2(5a)2=0(x+y-4 a)^{2}-(5 a)^{2}=0
or (x+y9a)(x+y+a)=0(x+y-9 a)(x +y +a)=0
x+y9a=0\Rightarrow x+y-9 a=0
or x+y+a=0x+y+a=0
These lines are parallel. Now, we find the distance from origin to the line.
Let, p1=0+09a12+12,p2=0+0+a12+12p_{1}=\frac{0+0-9 a}{\sqrt{1^{2}+1^{2}}}, p_{2}=\frac{0+0+a}{\sqrt{1^{2}+1^{2}}}
p1=9a2,p2=a2p_{1}=-\frac{9 a}{\sqrt{2}}, p_{2}=\frac{a}{\sqrt{2}}
The distance between two lines is
p2p1=a2+9a2\left |p_{2}-p_{1}\right|=\left|\frac{a}{\sqrt{2}}+\frac{9 a}{\sqrt{2}}\right|
=10a2=\frac{10 a}{\sqrt{2}}
=52a=5 \sqrt{2} a