Solveeit Logo

Question

Question: The distance between the line \(\overset{\rightarrow}{r}\) = (2\(\widehat{i}\) – 2\(\widehat{j}\) +...

The distance between the line

r\overset{\rightarrow}{r} = (2i^\widehat{i} – 2j^\widehat{j} + 3k^\widehat{k}) +l(i^\widehat{i}j^\widehat{j}+ 4k^\widehat{k}) & the plane

r\overset{\rightarrow}{r}.(i^\widehat{i}+ 5j^\widehat{j} + k^\widehat{k}) = 5 is :

A

1033\frac{10}{3\sqrt{3}}

B

103\frac{10}{3}

C

109\frac{10}{9}

D

None of these

Answer

1033\frac{10}{3\sqrt{3}}

Explanation

Solution

Given line is

Ž r\overset{\rightarrow}{r}= (2i^\widehat{i} – 2j^\widehat{j} + 3k^\widehat{k}) + l(i^\widehat{i}j^\widehat{j} + 4k^\widehat{k}) .....(i)

& r\overset{\rightarrow}{r}.(i^\widehat{i} +5j^\widehat{j} + k^\widehat{k}) = 5 ....(ii)

By (i) Ž {a=(2i^2j^+3k^)b=(i^j^+4k^) \left\{ \begin{aligned} & \overset{\rightarrow}{a} = (2\widehat{i}–2\widehat{j} + 3\widehat{k}) \\ & \overset{\rightarrow}{b} = (\widehat{i}–\widehat{j} + 4\widehat{k}) \end{aligned} \right.\

By (ii) Ž n\overset{\rightarrow}{n} = (i^\widehat{i} +5j^\widehat{j} + k^\widehat{k})

Q b\overset{\rightarrow}{b}.n\overset{\rightarrow}{n} = 0

Therefore, the line is parallel to the plane. Thus, the distance between the line & the plane is equal to the length of the perpendicular from a point a\overset{\rightarrow}{a} = (2i^\widehat{i} – 2j^\widehat{j} + 3k^\widehat{k}) on the line to the given plane.

Hence, the required distance

=(2i^2j^+3k^).(i^+5j^+k^)51+52+1\left| \frac{(2\widehat{i}–2\widehat{j} + 3\widehat{k}).(\widehat{i} + 5\widehat{j} + \widehat{k})–5}{\sqrt{1 + 5^{2} + 1}} \right|

= 1033\frac{10}{3\sqrt{3}}