Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The distance between the line r=(2i^+2j^k^)+λ(2i^+j^2k^)\overrightarrow{r}=(2\hat{i}+2\hat{j}-\hat{k})+\lambda (2\hat{i}+\hat{j}-2\hat{k}) and the plane r.(i^+2j^+2k^)=10\overrightarrow{r}.(\hat{i}+2\hat{j}+2\hat{k})=10 is equal to

A

5

B

4

C

3

D

2

Answer

2

Explanation

Solution

The given line is r=(2i^+2j^k^)+λ(2i^+j^+2k^)\overrightarrow{r}=(2\hat{i}+2\hat{j}-\hat{k})+\lambda (2\hat{i}+\hat{j}+2\hat{k}) or r=a+λb\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b} where a=(2i^+2j^k^),\overrightarrow{a}=(2\hat{i}+2\hat{j}-\hat{k}), and b=2i^+j^2k^\overrightarrow{b}=2\hat{i}+\hat{j}-2\hat{k}
The equation of plane is r.(i^+2j^+2k^)=10\overrightarrow{r}.(\hat{i}+2\hat{j}+2\hat{k})=10 or r.n^=d\overrightarrow{r}.\hat{n}=d where n^=(i^+2j^+2k^)\hat{n}=(\hat{i}+2\hat{j}+2\hat{k}) Since, b^.n^=(2i^+j^2k^).(i^+2j^+2k^)\hat{b}\,.\,\hat{n}=(2\hat{i}+\hat{j}-2\hat{k}).(\hat{i}+2\hat{j}+2\hat{k})
=2+24=0=2+2-4=0
Therefore, the line is parallel to the plane. Hence, the required distance
=(2i^+2j^k^).(i^+2j^+2k^)101+4+4=\left| \frac{(2\hat{i}+2\hat{j}-\hat{k}).(\hat{i}+2\hat{j}+2\hat{k})-10}{\sqrt{1+4+4}} \right|
=2+42109=\left| \frac{2+4-2-10}{\sqrt{9}} \right|
=63=2=\left| \frac{-6}{3} \right|=2