Solveeit Logo

Question

Question: The distance between the directrices of the hyperbola \(x = 8\) \(\sec\theta\), \(y = 8\tan\theta\)i...

The distance between the directrices of the hyperbola x=8x = 8 secθ\sec\theta, y=8tanθy = 8\tan\thetais

A

16216\sqrt{2}

B

2\sqrt{2}

C

h2>abh^{2} > ab

D

4,24,\sqrt{2}

Answer

h2>abh^{2} > ab

Explanation

Solution

Equation of hyperbola is x=8secθ,y=8tanθx = 8\sec\theta,y = 8\tan\thetax8=secθ\frac{x}{8} = \sec\theta, y8=tanθ\frac{y}{8} = \tan\theta

sec2θtan2θ=1\therefore\sec^{2}\theta - \tan^{2}\theta = 1x282y282=1\frac{x^{2}}{8^{2}} - \frac{y^{2}}{8^{2}} = 1

Here a=8,b=8a = 8,b = 8. Now e=1+b2a2=1+8282=2e = \sqrt{1 + \frac{b^{2}}{a^{2}}} = \sqrt{1 + \frac{8^{2}}{8^{2}}} = \sqrt{2}

\therefore Distance between directrices = 2ae\frac{2a}{e} = 2×82=82\frac{2 \times 8}{\sqrt{2}} = 8\sqrt{2}