Solveeit Logo

Question

Question: The distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ is...

The distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ is

A

162\sqrt{2}

B

2\sqrt{2}

C

82\sqrt{2}

D

42\sqrt{2}

Answer

2\sqrt{2}

Explanation

Solution

Equation of hyperbola is

X = 8 sec θ, y = 8 tan θ ⇒ x8\frac{x}{8} = sec θ, y8\frac{y}{8} = tan θ

\because sec2 θ - tan2 θ = 1 ⇒ x282y282\frac{x^{2}}{8^{2}} - \frac{y^{2}}{8^{2}} = 1

Here, a = 8, b = 8

Now, e = 1+b2a2=1+8282=1+1e=2\sqrt{1 + \frac{b^{2}}{a^{2}}} = \sqrt{1 + \frac{8^{2}}{8^{2}}} = \sqrt{1 + 1} \Rightarrow e = \sqrt{2}.