Solveeit Logo

Question

Physics Question on Electric Field

The distance between charges +q+q and q-q is 2l2l and between +2q+2q and 2q-2q is 4l4l. The electrostatic potential at point PP at a distance rr from center OO is α[qr2]×109V-\alpha \left[\frac{q}{r^2}\right] \times 10^9 \, \text{V}, where the value of α\alpha is ______.
(Use 14πϵ0=9×109Nm2C2\frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2 \text{C}^{-2})
Figure

Answer

Solution: The problem involves finding the net dipole moment and the resulting potential at a point due to two pairs of charges arranged as specified.

The charges are arranged in two pairs: - Pair 1: +q+q and q-q separated by a distance of 2l2l. - Pair 2: +2q+2q and 2q-2q separated by a distance of 4l4l.

The dipole moment PP for a pair of charges +Q+Q and Q-Q separated by distance dd is given by:

P=Qd.P = Q \cdot d.

For Pair 1:

P1=q(2l)=2ql.P_1 = q \cdot (2l) = 2ql.

For Pair 2:

P2=2q(4l)=8ql.P_2 = 2q \cdot (4l) = 8ql.

The two dipole moments P1P_1 and P2P_2 are positioned at an angle of 120120^\circ relative to each other. The magnitude of the resultant dipole moment PnetP_{\text{net}} can be found using the vector addition formula:

Pnet=P12+P22+2P1P2cosθ.P_{\text{net}} = \sqrt{P_1^2 + P_2^2 + 2P_1P_2\cos\theta}.

Substituting P1=2qlP_1 = 2ql, P2=8qlP_2 = 8ql, and θ=120\theta = 120^\circ:

Pnet=(2ql)2+(8ql)2+2(2ql)(8ql)cos120.P_{\text{net}} = \sqrt{(2ql)^2 + (8ql)^2 + 2 \cdot (2ql) \cdot (8ql) \cdot \cos 120^\circ}.

Since cos120=12\cos 120^\circ = -\frac{1}{2}:

Pnet=4q2l2+64q2l2+2(2ql)(8ql)(12).P_{\text{net}} = \sqrt{4q^2l^2 + 64q^2l^2 + 2 \cdot (2ql) \cdot (8ql) \cdot \left(-\frac{1}{2}\right)}. Pnet=4q2l2+64q2l216q2l2.P_{\text{net}} = \sqrt{4q^2l^2 + 64q^2l^2 - 16q^2l^2}. Pnet=52q2l2=36q2l2=6ql.P_{\text{net}} = \sqrt{52q^2l^2} = \sqrt{36q^2l^2} = 6ql.

The potential VV at a point on the axis of a dipole at a distance rr from the center is given by:

V=KPcosθr2.V = \frac{KP \cos \theta}{r^2}.

Here, K=14πϵ0=9×109Nm2C2K = \frac{1}{4\pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2\text{C}^{-2} and θ=120\theta = 120^\circ.

Substitute KK, Pnet=6qlP_{\text{net}} = 6ql, and cos120=12\cos 120^\circ = -\frac{1}{2}:

V=9×1096ql(12)r2.V = \frac{9 \times 10^9 \cdot 6ql \cdot \left(-\frac{1}{2}\right)}{r^2}. V=27×109qlr2.V = \frac{-27 \times 10^9 \cdot ql}{r^2}.

Thus, the value of α\alpha in the potential expression is:

α=27.\alpha = 27.