Solveeit Logo

Question

Question: The distance between charges +q and -q is 2l and between +2q and -2q is 4l. The electrostatic potent...

The distance between charges +q and -q is 2l and between +2q and -2q is 4l. The electrostatic potential at point P at a distance r from center O is α[qlr2]×109-\alpha \left[ \frac{ql}{r^2} \right] \times 10^9 V, where the value of α\alpha is ______. (Use 14πϵ0=9×109Nm2C2\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 Nm^2 C^{-2} and rlr \gg l).

Answer

27

Explanation

Solution

The problem asks us to find the electrostatic potential at point P due to a system of four charges placed along the x-axis. We are given the positions of the charges relative to the origin O, and the coordinates of point P in polar form (distance r and angle θ=60\theta = 60^\circ). We are also given the condition rlr \gg l, which suggests using a multipole expansion for the potential.

Let the charges and their positions be:

  1. Charge Q1=+2qQ_1 = +2q at x1=2lx_1 = -2l
  2. Charge Q2=qQ_2 = -q at x2=lx_2 = -l
  3. Charge Q3=+qQ_3 = +q at x3=+lx_3 = +l
  4. Charge Q4=2qQ_4 = -2q at x4=+2lx_4 = +2l

The electrostatic potential VV at a point (r,θ)(r, \theta) due to a system of charges QiQ_i located at positions xix_i along the x-axis, for rxir \gg x_i, can be expressed using the multipole expansion: V(r,θ)=14πϵ0[Qir+(Qixi)cosθr2+(Qixi2)(3cos2θ1)2r3+O(1/r4)]V(r, \theta) = \frac{1}{4\pi\epsilon_0} \left[ \frac{\sum Q_i}{r} + \frac{(\sum Q_i x_i) \cos\theta}{r^2} + \frac{(\sum Q_i x_i^2) (3\cos^2\theta - 1)}{2r^3} + O(1/r^4) \right]

Let's calculate the multipole moments:

  1. Monopole moment (Total charge): Qi=(+2q)+(q)+(+q)+(2q)=0\sum Q_i = (+2q) + (-q) + (+q) + (-2q) = 0

  2. Dipole moment: Qixi=(+2q)(2l)+(q)(l)+(+q)(l)+(2q)(2l)\sum Q_i x_i = (+2q)(-2l) + (-q)(-l) + (+q)(l) + (-2q)(2l) =4ql+ql+ql4ql= -4ql + ql + ql - 4ql =8ql+2ql=6ql= -8ql + 2ql = -6ql

  3. Quadrupole moment: Qixi2=(+2q)(2l)2+(q)(l)2+(+q)(l)2+(2q)(2l)2\sum Q_i x_i^2 = (+2q)(-2l)^2 + (-q)(-l)^2 + (+q)(l)^2 + (-2q)(2l)^2 =(+2q)(4l2)+(q)(l2)+(+q)(l2)+(2q)(4l2)= (+2q)(4l^2) + (-q)(l^2) + (+q)(l^2) + (-2q)(4l^2) =8ql2ql2+ql28ql2=0= 8ql^2 - ql^2 + ql^2 - 8ql^2 = 0

Now, substitute these values into the potential expansion. Since θ=60\theta = 60^\circ, we have cosθ=cos60=1/2\cos\theta = \cos 60^\circ = 1/2. Also, 3cos2θ1=3(1/2)21=3(1/4)1=3/41=1/43\cos^2\theta - 1 = 3(1/2)^2 - 1 = 3(1/4) - 1 = 3/4 - 1 = -1/4.

Substituting the calculated moments and cosθ\cos\theta into the potential formula: V(r,60)=14πϵ0[0r+(6ql)(1/2)r2+(0)(1/4)2r3]V(r, 60^\circ) = \frac{1}{4\pi\epsilon_0} \left[ \frac{0}{r} + \frac{(-6ql)(1/2)}{r^2} + \frac{(0)(-1/4)}{2r^3} \right] V(r,60)=14πϵ0[3qlr2]V(r, 60^\circ) = \frac{1}{4\pi\epsilon_0} \left[ -\frac{3ql}{r^2} \right]

We are given that 14πϵ0=9×109 Nm2 C2\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2 \text{ C}^{-2}. So, V=(9×109)[3qlr2]V = (9 \times 10^9) \left[ -\frac{3ql}{r^2} \right] V V=27[qlr2]×109V = -27 \left[ \frac{ql}{r^2} \right] \times 10^9 V

The problem states that the electrostatic potential at point P is α[qlr2]×109-\alpha \left[ \frac{ql}{r^2} \right] \times 10^9 V. Comparing our calculated potential with the given form: 27[qlr2]×109 V=α[qlr2]×109 V-27 \left[ \frac{ql}{r^2} \right] \times 10^9 \text{ V} = -\alpha \left[ \frac{ql}{r^2} \right] \times 10^9 \text{ V}

From this comparison, we can see that α=27\alpha = 27.

The final answer is 27\boxed{27}.

Explanation of the solution:

  1. Identify charges and their positions from the diagram.
  2. Use multipole expansion for potential at a distant point (rlr \gg l).
  3. Calculate monopole, dipole, and quadrupole moments of the charge distribution.
    • Monopole moment (Qi\sum Q_i) = 0.
    • Dipole moment (Qixi\sum Q_i x_i) = -6ql.
    • Quadrupole moment (Qixi2\sum Q_i x_i^2) = 0.
  4. Substitute these moments and the given angle (θ=60\theta = 60^\circ) into the potential formula.
  5. The potential simplifies to V=14πϵ0[3qlr2]V = \frac{1}{4\pi\epsilon_0} \left[ -\frac{3ql}{r^2} \right].
  6. Substitute the value of 14πϵ0=9×109\frac{1}{4\pi\epsilon_0} = 9 \times 10^9.
  7. Compare the resulting potential expression with the given form α[qlr2]×109-\alpha \left[ \frac{ql}{r^2} \right] \times 10^9 to find α\alpha.