Solveeit Logo

Question

Chemistry Question on Equilibrium Constant

The dissociation equilibrium of a gas AB2AB_2 can be represented as 2AB2(g)2AB(g)+B2(g)2 A B_2(g) \rightleftharpoons 2 A B (g) + B_2 (g) The degree of dissociation is xx and is small compared to 11. The expression relating the degree of dissociation (x) with equilibrium constant KpK_p and total pressure pp is

A

(2Kp/p)(2K_p/p)

B

(2Kp/p)1/3(2K_p/p)^{1/3}

C

(2Kp/p)1/2(2K_p/p)^{1/2}

D

(Kp/p)(K_p/p)

Answer

(2Kp/p)1/3(2K_p/p)^{1/3}

Explanation

Solution

Moles at equilibrium =2(1x)+2x+x=2(1-x)+2 x+x
=22x+2x+x=x+2=2-2 x+2 x +x=x+2,

Kp=[PAB]2[PB1][PAll1]=(2xx+2×p)2(x2+x×p)[2(1x)x+2×p]2K_{p}= \frac{\left[P_{A B}\right]^{2}\left[P_{B_{1}}\right]}{\left[P_{A l l_{1}}\right]}=\frac{\left(\frac{2 x}{x+2} \times p\right)^{2}\left(\frac{x}{2+x} \times p\right)}{\left[\frac{2(1-x)}{x+2} \times p\right]^{2}}
=4x3x+2×p4(1x)2=4x2×p2×14= \frac{\frac{4 x^{3}}{x+2} \times p}{4(1-x)^{2}}=\frac{4 x^{2} \times p}{2} \times \frac{1}{4}
x=(2Kpp)1/3(x=\left(\frac{2 K_{p}}{p}\right)^{1 / 3} ( as 1x1,2+x2)1-x \approx 1,2+x \approx 2)