Solveeit Logo

Question

Question: The dissociation constant of a weak monobasic acid is 3.2 x 104. Calculate the degree of dissociatio...

The dissociation constant of a weak monobasic acid is 3.2 x 104. Calculate the degree of dissociation in its 0.04 M solution.

Answer

Degree of dissociation ≈ 0.086 (8.6%).

Explanation

Solution

For a weak acid HA dissociating as

HAH++A\text{HA} \leftrightarrow \text{H}^+ + \text{A}^-

let the initial concentration be C=0.04MC = 0.04\,M and the degree of dissociation be α\alpha. At equilibrium:

[H+]=[A]=Cα,[HA]=C(1α)[\text{H}^+] = [\text{A}^-] = C\alpha, \quad [\text{HA}] = C(1-\alpha)

The acid dissociation constant is given by

Ka=[H+][A][HA]=C2α2C(1α)=Cα21αK_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} = \frac{C^2\alpha^2}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}

Given Ka=3.2×104K_a = 3.2\times10^{-4}, we have

3.2×104=0.04α21α3.2\times10^{-4} = \frac{0.04\,\alpha^2}{1-\alpha}

Rearrange to form a quadratic in α\alpha:

0.04α2=3.2×104(1α)0.04\,\alpha^2 = 3.2\times10^{-4}(1-\alpha) 0.04α2+3.2×104α3.2×104=00.04\,\alpha^2 + 3.2\times10^{-4}\,\alpha - 3.2\times10^{-4} = 0

Divide through by 0.040.04 to simplify:

α2+0.008α0.008=0\alpha^2 + 0.008\,\alpha - 0.008 = 0

Using the quadratic formula:

α=0.008±(0.008)2+4×0.0082\alpha = \frac{-0.008 \pm \sqrt{(0.008)^2 + 4\times0.008}}{2} α=0.008±0.000064+0.0322=0.008±0.0320642\alpha = \frac{-0.008 \pm \sqrt{0.000064 + 0.032}}{2} = \frac{-0.008 \pm \sqrt{0.032064}}{2} 0.0320640.1791\sqrt{0.032064} \approx 0.1791 α=0.008+0.179120.171120.0856\alpha = \frac{-0.008 + 0.1791}{2} \approx \frac{0.1711}{2} \approx 0.0856

Thus, the degree of dissociation is approximately 0.086 (or 8.6%).