Solveeit Logo

Question

Question: The dissociation constant of a substituted benzoic acid at \({25^\circ }{\text{C}}\) is \(1.0 \times...

The dissociation constant of a substituted benzoic acid at 25C{25^\circ }{\text{C}} is 1.0×1041.0 \times {10^{ - 4}}. Find the pH of a 0.01 M0.01{\text{ M}} solution of its sodium salt.
A.44
B.66
C.88
D.1010

Explanation

Solution

First, we will identify the acid base pair of the salt. Here, the salt gives benzoic acid and sodium hydroxide on hydrolysis so it is a salt of strong base and weak acid. To find the pH of this salt, we will use the formula-
pH = 7 + 12pKa + 12logC\Rightarrow {\text{pH = 7 + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{p}}{{\text{K}}_{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{logC}} --- (i)
Where pKa=log10(Ka){\text{p}}{{\text{K}}_{\text{a}}} = - {\log _{10}}\left( {{{\text{K}}_{\text{a}}}} \right) and C is concentration of the salt. Here Ka{{\text{K}}_{\text{a}}}is a dissociation constant of acid.
Put the given values in the formula and solve it to get the answer.

Complete step-by-step answer: Given, the dissociation constant of a substituted benzoic acid=1.0×1041.0 \times {10^{ - 4}}
The concentration of its sodium salt=0.01 M0.01{\text{ M}}
We have to find pH of the sodium salt of benzoic acid.
Sodium salt of benzoic acid C6H5COONa{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COONa}} is prepared from strong base (sodium hydroxide)NaOH{\text{NaOH}}and weak acid (benzoic acid)C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} which can be written as-
\Rightarrow Salt\rightleftharpoons Weak acid Strong base
The formula of pH of salt of weak acid and strong base is given as-
pH = 7 + 12pKa + 12logC\Rightarrow {\text{pH = 7 + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{p}}{{\text{K}}_{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{logC}} --- (i)
Where pKa=log10(Ka){\text{p}}{{\text{K}}_{\text{a}}} = - {\log _{10}}\left( {{{\text{K}}_{\text{a}}}} \right) and C is concentration of the salt
We are given that the dissociation constant Ka=104{{\text{K}}_{\text{a}}} = {10^{ - 4}} so we get-
\Rightarrow pKa=log10(104){\text{p}}{{\text{K}}_{\text{a}}} = - {\log _{10}}\left( {{{10}^{ - 4}}} \right)
We know that thatlogmn=nlogm\log {m^n} = n\log m, so on applying this, we get-
\Rightarrow pKa=(4)log10(10){\text{p}}{{\text{K}}_{\text{a}}} = - \left( { - 4} \right){\log _{10}}\left( {10} \right)
Now, we know that log1010=1{\log _{10}}10 = 1 so we get-
pKa=4\Rightarrow {\text{p}}{{\text{K}}_{\text{a}}} = 4--- (ii)
Also given, Concentration =0.01=1020.01 = {10^{ - 2}}
So log C = log10102\log {\text{ C = lo}}{{\text{g}}_{10}}{\text{1}}{{\text{0}}^{ - 2}}
And on applying the rulelogmn=nlogm\log {m^n} = n\log m, we get-
log C = 2log1010\Rightarrow \log {\text{ C = }} - 2{\text{lo}}{{\text{g}}_{10}}{\text{10}}
We know that log1010=1{\log _{10}}10 = 1 so we get-
log C = 2\Rightarrow \log {\text{ C = }} - 2-- (iii)
On putting the values from eq. (ii) and eq. (iii) in eq. (i), we get-
pH = 7 + (12×4) + [12×(2)]\Rightarrow {\text{pH = 7 + }}\left( {\dfrac{{\text{1}}}{{\text{2}}} \times {\text{4}}} \right){\text{ + }}\left[ {\dfrac{{\text{1}}}{{\text{2}}} \times \left( { - 2} \right)} \right]
On simplifying, we get-
pH = 7 + 21\Rightarrow {\text{pH = 7 + }}2 - 1
On solving, we get-
pH = 8\Rightarrow {\text{pH = }}8

The correct answer is option C.

Note: In this type of questions, we have to remember the formula of pH of the different types of salt. They are as follows-
The formula of pH of salt of strong acid and weak base is given as-
pH = 712pKb12logC\Rightarrow {\text{pH = 7}} - \dfrac{{\text{1}}}{{\text{2}}}{\text{p}}{{\text{K}}_{\text{b}}} - \dfrac{{\text{1}}}{{\text{2}}}{\text{logC}} where pKb=log10(Kb){\text{p}}{{\text{K}}_{\text{b}}} = - {\log _{10}}\left( {{{\text{K}}_{\text{b}}}} \right) and C is concentration of the salt
The formula of pH of salt of weak acid and weak base is given as-
pH = 7 + 12pKa12pKb\Rightarrow {\text{pH = 7 + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{p}}{{\text{K}}_{\text{a}}} - \dfrac{{\text{1}}}{{\text{2}}}{\text{p}}{{\text{K}}_{\text{b}}} where pKa=log10(Ka){\text{p}}{{\text{K}}_{\text{a}}} = - {\log _{10}}\left( {{{\text{K}}_{\text{a}}}} \right) and pKb=log10(Kb){\text{p}}{{\text{K}}_{\text{b}}} = - {\log _{10}}\left( {{{\text{K}}_{\text{b}}}} \right)
Also, remember that salt of strong acid and strong base do not hydrolyze so its pH will remain 77.