Solveeit Logo

Question

Question: The dissociation constant for acetic acid and \[\text{ HCN }\] at \(\text{ 2}{{\text{5}}^{\text{0}}}...

The dissociation constant for acetic acid and  HCN \text{ HCN } at  250\text{ 2}{{\text{5}}^{\text{0}}}\text{C } are  1.5 !!×!! 105 \text{ 1}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-5}}\text{ } and  4.5 !!×!! 1010 \text{ 4}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-10}}\text{ } respectively. The equilibrium constant for the following equilibrium would be:
CN + CH3COOHHCN + CH3COO\text{C}{{\text{N}}^{-}}\text{ + C}{{\text{H}}_{\text{3}}}\text{COOH}\rightleftharpoons \text{HCN + C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}
(A)  3 !!×!! 104\text{ 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{4}}}
(B) 3 !!×!! 105\text{ 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{5}}
(C)  3 !!×!! 105\text{ 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-5}}
(D) 3 !!×!! 104\text{ 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-4}}

Explanation

Solution

The equilibrium constant (K) establishes the relation between the concentration of reactant and product .For a reversible reaction, in which the acid generates its conjugate base and base accepts the proton to form a conjugate acid, the equilibrium constant (K) is related to the dissociation constant of acid  Ka\text{ }{{\text{K}}_{\text{a}}}and the dissociation constant of the base  Kb\text{ }{{\text{K}}_{\text{b}}} as:
 K = Ka !!×!! Kb\text{ K = }{{\text{K}}_{\text{a}}}\text{ }\\!\\!\times\\!\\!\text{ }{{\text{K}}_{\text{b}}}

Complete step by step solution:
We need to consider the following equations for the equilibrium constants.
Here they are:
The dissociation of acetic acid into acetate ion and hydrogen ion is as follows:
 CH3COOH  CH3COO + H+\text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}} (1)
Let’s the dissociation constant for the acetic acid be  K1 \text{ }{{\text{K}}_{\text{1}}}\text{ }.We have given the value of  K1 \text{ }{{\text{K}}_{\text{1}}}\text{ } which is ,
 K1= 1.5 !!×!! 105\text{ }{{\text{K}}_{\text{1}}}=\text{ 1}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-5}}
Now let us move to the equation of HCN. So here it is:
HCN H+ + CN\text{HCN }\rightleftharpoons {{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}} (2)
The  HCN \text{ HCN }dissociates into the hydrogen ion and cyanide ion.
In this case, the  K2\text{ }{{\text{K}}_{\text{2}}} represents the value of the dissociation constant of HCN. The value of the dissociation constant of  HCN \text{ HCN } is given as,
 K2 = 4.5 !!×!! 1010\text{ }{{\text{K}}_{\text{2}}}\text{ = 4}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-10}}
Now on reversing the reaction of dissociation of  HCN \text{ HCN }.We get the following equation,
 H+ + CN HCN \text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN }
Let us name this equation as equation 3. In this case, the  K3\text{ }{{\text{K}}_{\text{3}}} represents the dissociation constant. The value of  K3\text{ }{{\text{K}}_{\text{3}}} can also is written as  1K2\text{ }\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}} .
Therefore, we can say that the value of  K3 \text{ }{{\text{K}}_{\text{3}}}\text{ }is
 K3=1K2=14.5×1010\text{ }{{\text{K}}_{\text{3}}}\text{=}\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}}=\dfrac{1}{4.5\times {{10}^{-10}}}
Now among the above equations that we have got, we have to add equation 1 and equation 2, to get the value of K, which is the equilibrium constant.
So adding the equation 1 and equation 3 we get the following equation:

& \text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}} \\\ & \+ \\\ & \text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN} \\\ & \overline{\text{C}{{\text{H}}_{\text{3}}}\text{COOH + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{+ HCN }} \\\ \end{aligned}$$ Now finding the value of K or the equilibrium constant. The equilibrium constant K is equal to the product of the dissociation constant of acetic acid and hydrogen cyanide. $\text{K = }{{\text{K}}_{\text{1}}}\text{ }\\!\\!\times\\!\\!\text{ }{{\text{K}}_{\text{3}}}\text{ = 1}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-5}}\text{ }\\!\\!\times\\!\\!\text{ }\dfrac{\text{1}}{\text{4}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-10}}}\text{ = 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{4}}}$ Therefore, we can say that the value of the equilibrium constant is $\text{ 3 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ }$. **Hence, (A) is the correct option.** **Note:** We should know that the equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium. Chemical equilibrium is a state which is approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.