Question
Mathematics Question on Limits
The \displaystyle \lim_{x \to \frac{\pi}{2}} \left\\{ 2x \tan x - \frac{\pi}{\cos x }\right\\} is
A
-1
B
-3
C
-2
D
0
Answer
-2
Explanation
Solution
Let L =\displaystyle \lim _{x \rightarrow \frac{\pi}{2}}\left\\{2 x \tan x-\frac{\pi}{\cos X}\right\\}
=\displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{\frac{2 x \sin x-\pi}{\cos \,x}\right\\}
=\displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{2 x \frac{\sin x}{\cos X}-\frac{\pi}{\cos x}\right\\}
[00 form ]
Now, by using L'Hospital Rule
L= \displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{\frac{2 \sin x+2 x \cos x}{(-\sin x)}\right\\}
=(−1)2×1+2×2π×cos2π=−2