Solveeit Logo

Question

Mathematics Question on Limits

The \displaystyle \lim_{x \to \frac{\pi}{2}} \left\\{ 2x \tan x - \frac{\pi}{\cos x }\right\\} is

A

-1

B

-3

C

-2

D

0

Answer

-2

Explanation

Solution

Let L =\displaystyle \lim _{x \rightarrow \frac{\pi}{2}}\left\\{2 x \tan x-\frac{\pi}{\cos X}\right\\}
=\displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{\frac{2 x \sin x-\pi}{\cos \,x}\right\\}
=\displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{2 x \frac{\sin x}{\cos X}-\frac{\pi}{\cos x}\right\\}
[00[\frac{0}{0} form ]
Now, by using L'Hospital Rule
L= \displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left\\{\frac{2 \sin x+2 x \cos x}{(-\sin x)}\right\\}
=2×1+2×π2×cosπ2(1)=2= \frac{2 \times 1+2 \times \frac{\pi}{2} \times \cos \frac{\pi}{2}}{(-1)}=-2