Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacements of two particles of same mass executing SHM are represented by the equations x1=4sin(10t+π6){{x}_{1}}=4\sin \left( 10t+\frac{\pi }{6} \right) and x2=5cos(ωt){{x}_{2}}=5\cos (\omega t) The value of co for which the energies of both the particles remain same is

A

16 unit

B

6 unit

C

4 unit

D

8 unit

Answer

8 unit

Explanation

Solution

The equation of displacement x1=4sin(10t+π6){{x}_{1}}=4\sin \left( 10t+\frac{\pi }{6} \right) The energy of this equation E1=12mw12a12{{E}_{1}}=\frac{1}{2}mw_{1}^{2}a_{1}^{2} =12m×10×10×4×4=\frac{1}{2}m\times 10\times 10\times 4\times 4 The second equation of displacement x2=5cos(ωt){{x}_{2}}=5\cos (\omega t) The energy of this equation E2=12mω22a22{{E}_{2}}=\frac{1}{2}m\omega _{2}^{2}a_{2}^{2} =12mω22×5×5=\frac{1}{2}m\omega _{2}^{2}\times 5\times 5 According to question \because E1=E2{{E}_{1}}={{E}_{2}} \therefore 12mω22×5×5=12m×10×10×4×4\frac{1}{2}m\omega _{2}^{2}\times 5\times 5=\frac{1}{2}m\times 10\times 10\times 4\times 4 ω22=10×10×4×45×5\omega _{2}^{2}=\frac{10\times 10\times 4\times 4}{5\times 5} ω22=2×2×4×4\omega _{2}^{2}=2\times 2\times 4\times 4 Or ω2=2×2×4×4{{\omega }_{2}}=\sqrt{2\times 2\times 4\times 4} =2×4=8=2\times 4=8 unit