Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement yy of a particle, if given by y=4cos2(t/2)sin(1000t)y=4 \cos ^{2}(t / 2) \sin (1000 t). This expression may be considered to be a result of the superposition of how many simple harmonic motions?

A

2

B

3

C

4

D

5

Answer

3

Explanation

Solution

\because Equation of displacement of particle is
y=4cos2(t2)sin(1000t)...(i)y=4 \cos ^{2}\left(\frac{t}{2}\right) \sin (1000 t) \,...(i)
or y=4[(1+cost2)sin1000t]y=4\left[\left(\frac{1+\cos t}{2}\right) \sin 1000 t\right]
(cos2x=1+cos2x2)\left(\because \cos ^{2} x=\frac{1+\cos 2 x}{2}\right)
or y=3sin1000t+2costsin1000ty=3 \sin 1000 t+2 \cos t \sin 1000 t
or y=2sin1000t+sin1001t+sint999ty=2 \sin 1000 t+\sin 1001 t+\sin t 999 t
[2sinAcosB=sin(A+B)+sin(AB)2 \sin A \cos B=\sin (A+B)+\sin (A-B)]
Hence, E (i) is the result of the superposition of three simple harmonic motion.