Solveeit Logo

Question

Question: The displacement \(x\) of a particle varies with time \(t , x = a e ^ { - \alpha t } + b e ^ { \be...

The displacement xx of a particle varies with time t,x=aeαt+beβtt , x = a e ^ { - \alpha t } + b e ^ { \beta t } , where a,b,αa , b , \alpha and β\beta are positive constants. The velocity of the particle will

A

Go on decreasing with time

B

Be independent of α\alpha and β\beta

C

Drop to zero when α=β\alpha = \beta

D

Go on increasing with time

Answer

Go on increasing with time

Explanation

Solution

x=aeαt+beβtx = a e ^ { - \alpha t } + b e ^ { \beta t }

Velocity v=dxdt=ddt(aeαt+beβt)v = \frac { d x } { d t } = \frac { d } { d t } \left( a e ^ { - \alpha t } + b e ^ { \beta t } \right)

=aeαt(α)+beβtβ)\left. = a \cdot e ^ { - \alpha t } ( - \alpha ) + b e ^ { \beta t } \cdot \beta \right) =aαeαt+bβeβt= - a \alpha e ^ { - \alpha t } + b \beta e ^ { \beta t }

Acceleration =aαeαt(α)+bβebt.β= - a \alpha e ^ { - \alpha t } ( - \alpha ) + b \beta e ^ { b t } . \beta

=aα2eαt+bβ2eβt= a \alpha ^ { 2 } e ^ { - \alpha t } + b \beta ^ { 2 } e ^ { \beta t }

Acceleration is positive so velocity goes on increasing with time.