Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement of the motion of a particle is represent by a equation y=Asinωt+Bcosωty=A \sin \omega t+B \cos \omega t The motion of particle is

A

SHM with amplitude A2+B2 \sqrt{{A}^{2}+B^{2} }

B

SHM with amplitude A+BA+B

C

SHM with amplitude AA

D

Oscillatory but not in SHM

Answer

SHM with amplitude A2+B2 \sqrt{{A}^{2}+B^{2} }

Explanation

Solution

The correct answer is A:SHM with amplitude A2+B2\sqrt{A^2+B^2}
y=Asinωt+Bcosωty=A \sin \omega t+B \cos \omega t
let A=acosϕA=a \cos \phi
B=asinϕB=a \sin \phi
then equation (1) becomes
y=acosϕsinωt+asinϕcosωty=a \cos \phi \sin \omega t+a \sin \phi \cos \omega t
y=asin(ωt+ϕ)y=a \sin (\omega t+\phi)
It is clear that the equation number (2)(2)
in simple harmonic motion with amplitude aa
squaring and adding (2)(2) and (3)(3), we get
A2+B2a2(cos2ϕ+sin2ϕ)A^{2}+B^{2} \leq a^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)
a=A2+B2a=\sqrt{A^{2}+B^{2}}