Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement of a particle varies with time according to the relation y=asinωt+bcosωty = a \,sin\,\omega t + b\, cos \,\omega t.

A

The motion is oscillatory but not SHM

B

The motion is SHM with amplitude a+ba + b

C

The motion is SHM with amplitude a2+b2a^2 + b^2

D

The motion is SHM with amplitude a2+b2 \sqrt {a^2 + b^2}

Answer

The motion is SHM with amplitude a2+b2 \sqrt {a^2 + b^2}

Explanation

Solution

Given :x=asinωt+bcosωt...(i)x = a\, sin\, \omega t + b \,cos\, \omega t \quad...\left(i\right) Let a=Acosϕ...(ii)a = A \,cos \,\phi\quad...\left(ii\right) and b=Asinϕ...(iii)b = A \,sin\, \phi \quad...\left(iii\right) Squaring and adding (ii)(ii) and (iii)(iii), we get a2+b2=A2cos2ϕ+A2sin2ϕ=A2a^2 +b^2 = A^2 \, cos^2 \phi + A^2\,sin^2 \phi = A^2 E (i)(i) can be written as x=Acosϕsinωt+Asinϕcosωtx = A \,cos \phi \,sin\omega t + A\, sin\,\phi\, cos\,\omega t =Asin(ωt+ϕ)= A sin ( \omega t +\phi) It is equation of SHMSHM with amplitude A=a2+b2A = \sqrt {a^2 +b^2}.