Solveeit Logo

Question

Question: The displacement of a particle varies with time according to the relation y = a sin wt + b cos \(\om...

The displacement of a particle varies with time according to the relation y = a sin wt + b cos ω\omegat

A

The motion is oscillatory but not SHM

B

The motion is SHM with amplitude a + b

C

The motion is SHM with amplitude a2 + b2

D

The motion is SHM with amplitude a2+b2\sqrt{a^{2} + b^{2}}

Answer

The motion is SHM with amplitude a2+b2\sqrt{a^{2} + b^{2}}

Explanation

Solution

Given : x=asinωt+bcosωtx = a\sin\omega t + b\cos\omega t … (i)

Let a=Acosφa = A\cos\varphi … (ii)

And b=Asinφb = A\sin\varphi ….. (iii)

Squaring and adding (ii) and (iii) we get

a2+b2=A2cos2φ+A2sin2φ=A2a^{2} + b^{2} = A^{2}\cos^{2}\varphi + A^{2}\sin^{2}\varphi = A^{2}

Eq. (i) can be written as

x=Acosφsinωt+Asinφcosωt=Asin(ωt+φ)x = A\cos\varphi\sin\omega t + A\sin\varphi\cos\omega t = A\sin(\omega t + \varphi) it is equation of SHM with amplitude A=a2+b2A = \sqrt{a^{2} + b^{2}}