Solveeit Logo

Question

Physics Question on Oscillations

The displacement of a particle is represented by the equation y=3cos(π42ωt) y = 3\,cos (\frac{\pi}{4} - 2 \omega t). The motion of the particle is

A

simple harmonic with period 2πω\frac{2\pi}{\omega}

B

simple harmonic with period πω\frac{\pi}{\omega}

C

periodic but not simple harmonic

D

non-periodic

Answer

simple harmonic with period πω\frac{\pi}{\omega}

Explanation

Solution

Given : y=3cos(π42ωt)y = 3\,cos (\frac{\pi}{4}-2\omega t) y=3cos[(2ωtπ4)] y = 3\,cos [- (2\omega t - \frac{\pi}{4})] =3cos(2ωtπ4)=3\, cos (2\omega t - \frac{\pi}{4}) [cos(θ)=cosθ][\because cos (\theta) = cos \theta] It represents simple harmonic motion with time period T=2π2ωT = \frac{2\pi}{2\omega} =πω= \frac{\pi}{\omega}.