Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement of a particle executing simple harmonic motion is given by y=A0+Asinwt+Bcoswty =A_{0}+ A\, sin\,wt + B\, cos\,wt Then the amplitude of its oscillation is given by:

A

A02+(A+B)2\sqrt {A^2_0 +(A+B)^2}

B

A+BA+B

C

A0+A2+B2A_0 +\sqrt{A^2+B^2}

D

A2+B2\sqrt{A^2+B^2}

Answer

A2+B2\sqrt{A^2+B^2}

Explanation

Solution

x=A0+Asinwt+Bcoswtx=A_{0}+A \sin \,wt+B \,\cos \,w t
xA0=Asinwt+Bcoswtx-A_{0}=A\, \sin\, wt+B \,\cos \,w t
\therefore Amplitude =A2+B2+2ABcos90=\sqrt{A^{2}+B^{2}+2 A B \cos 90}
=A2+B2=\sqrt{A^{2}+B^{2}}