Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement of a particle executing SHM is given by x=10sin(ωt+π3)mx = 10 \sin\left(\omega t + \frac{\pi}{3}\right) \, \text{m}. The time period of motion is 3.14s3.14 \, \text{s}. The velocity of the particle at t=0t = 0 is ______ m/s.

Answer

Given:
T=3.14=2πω.T = 3.14 = \frac{2\pi}{\omega}.

Solving for ω\omega:
ω=2rad/s.\omega = 2 \, \text{rad/s}.

The displacement xx is given by:
x=10sin(ωt+π3).x = 10 \sin\left(\omega t + \frac{\pi}{3}\right).

To find the velocity vv, differentiate xx with respect to tt:
v=dxdt=10ωcos(ωt+π3).v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right).

At t=0t = 0:
v=10ωcos(π3)=10×2×12=10m/s.v = 10\omega \cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} = 10 \, \text{m/s}.

Answer: 10 m/s