Solveeit Logo

Question

Physics Question on Energy in simple harmonic motion

The displacement of a particle executing SHMSHM is given by y=5sin(4t+π3)y=5 \sin \left(4 t+\frac{\pi}{3}\right) If TT is the time period and the mass of the particle is 2g2\, g, the kinetic energy of the particle when t=T/4t = T / 4 is given by

A

0.4J

B

0.5 J

C

3 J

D

0.3 J

Answer

0.3 J

Explanation

Solution

Particle executing SHM.
Displacement y=5sin(4t+π3)y =5 \sin\left(4t +\frac{\pi}{3}\right) ....(i)
Velocity of particle
(dydt)=5ddtsin(4t+π3)\left(\frac{dy}{dt}\right) = \frac{5d}{dt} \sin \left(4t + \frac{\pi}{3}\right)
=5cos(4t+π3).4=5 \cos \left(4 t + \frac{\pi}{3} \right). 4
=20cos(4t+π3)= 20 \cos \left(4 t + \frac{\pi}{3}\right)
Velocity at t=(T4)t = \left(\frac{T}{4}\right)
(dydt)t=T4=20cos(4×T4+π3)\left(\frac{dy}{dt}\right)_{t = \frac{T}{4}} = 20 \cos \left(4 \times\frac{T}{4} + \frac{\pi}{3}\right)
or u=20cos(T+π3)u = 20 \cos \left(T+ \frac{\pi}{3}\right) ....(ii)
Comparing the given equation with standard equation of SHM.
y=asin(ωt+ϕ)y = a \sin \left(\omega t + \phi\right)
We get, ω=4\omega = 4
As ω=2πT\omega = \frac{2 \pi}{T}
T=2πω\Rightarrow T = \frac{2\pi}{\omega}
or T=2π4T = \frac{2\pi}{4}
=(π2)= \left(\frac{\pi}{2}\right)
Now, putting value of T in E (ii), we get
u=20cos(π2+π3)u = 20 \cos \left(\frac{\pi}{2} + \frac{\pi}{3}\right)
=20sinπ3= - 20 \sin \frac{\pi}{3}
=10×3= -10 \times\sqrt{3}
The kinetic energy of particle,
KE=12mu2KE = \frac{1}{2} mu^{2}
=12×2×103×(103)2= \frac{1}{2} \times2 \times10^{-3} \times\left(-10 \sqrt{3}\right)^{2}
=103×100×3= 10^{-3} \times100 \times3
KE=0.3JKE = 0.3\, J