Solveeit Logo

Question

Physics Question on simple harmonic motion

The displacement of a particle along the xx axis is given by x=asin2ωtx = a \sin^2 \omega t. The motion of the particle corresponds to

A

simple harmonic motion of frequency ω/π\omega / \pi

B

simple harmonic motion of frequency 3ω/2π3 \omega / 2 \pi

C

non simple harmonic motion

D

simple harmonic motion of frequency ω/2π\omega / 2 \pi

Answer

non simple harmonic motion

Explanation

Solution

\begin{array}{l}
\text { Given, } X = a \sin ^{2} \omega t\\
\text { or } X=a\left(\frac{1-\cos 2 \omega t}{2}\right)\left[\because \cos 2 \theta=1-2 \sin ^{2} \theta\right]\\
\text { or } X =\frac{a}{2}-\frac{ a \cos 2 \omega t }{2}\\
\text { Now, } V =\frac{ d x }{ d t }= a \omega \sin 2 \omega t\\
\text { and } a = d v / d t =2 a \omega^{2} \cos 2 \omega t\\
\text { Here, a is not directly proportional to }(- x ) \text { which is a condition for SHM. }
\end{array}