Solveeit Logo

Question

Question: The directrix of the hyperbola \(\frac{x^{2}}{9} - \frac{y^{2}}{4}\) = 1 is...

The directrix of the hyperbola x29y24\frac{x^{2}}{9} - \frac{y^{2}}{4} = 1 is

A

x = 913\frac{9}{\sqrt{13}}

B

y = 913\frac{9}{\sqrt{13}}

C

x = 613\frac{6}{\sqrt{13}}

D

y = 613\frac{6}{\sqrt{13}}

Answer

x = 913\frac{9}{\sqrt{13}}

Explanation

Solution

Equation of directrix

Ž x = ± ae\frac{a}{e}

x29y24\frac{x^{2}}{9} - \frac{y^{2}}{4} = 1 Ž {a2=9b2=4 \left\{ \begin{matrix} a^{2} = 9 \\ b^{2} = 4 \end{matrix} \right.\

& e = 1+b2a2=133\sqrt{1 + \frac{b^{2}}{a^{2}}} = \frac{\sqrt{13}}{3}