Solveeit Logo

Question

Question: The direction ratios of the line \(x - y + z - 5 =\) \(0 = x - 3 y - 6\) are...

The direction ratios of the line xy+z5=x - y + z - 5 = 0=x3y60 = x - 3 y - 6 are

A

3, 1, – 2

B

2, – 4, 1

C

314,114,214\frac { 3 } { \sqrt { 14 } } , \frac { 1 } { \sqrt { 14 } } , \frac { - 2 } { \sqrt { 14 } }

D

241,441,141\frac { 2 } { \sqrt { 41 } } , \frac { - 4 } { \sqrt { 41 } } , \frac { 1 } { \sqrt { 41 } }

Answer

3, 1, – 2

Explanation

Solution

If l, m, n are direction ratios of line, then by

Al+Bm+Cn=0A l + B m + C n = 0

For xy+z5=0,lm+n=0x - y + z - 5 = 0 , l - m + n = 0 …..(i)

For x3y6=0,l3m+0n=0x - 3 y - 6 = 0 , l - 3 m + 0 n = 0 …..(ii)

or l0+3=m10=n3+1\frac { l } { 0 + 3 } = \frac { m } { 1 - 0 } = \frac { n } { - 3 + 1 } or l3=m1=n2\frac { l } { 3 } = \frac { m } { 1 } = \frac { n } { - 2 }

\thereforeDirection ratios are (3,1,2)( 3,1 , - 2 ).

Note : Option (3), (314,114,214)\left( \frac { 3 } { \sqrt { 14 } } , \frac { 1 } { \sqrt { 14 } } , - \frac { 2 } { \sqrt { 14 } } \right) may also be an answer but best answer is A(3,1,2)A ( 3,1 , - 2 ) because in (3) direction cosines are written.