Solveeit Logo

Question

Mathematics Question on Plane

The direction ratios of the line OP are equal and the length OP=3OP = \sqrt{3} . Then the coordinates of the point P are :

A

( -1, - 1, -1)

B

(3,3,3)( \sqrt{3} , \sqrt{3} , \sqrt{3})

C

(2,2,2)( \sqrt{2} , \sqrt{2} , \sqrt{2})

D

(2, 2, 2)

Answer

( -1, - 1, -1)

Explanation

Solution

Let coordinates of P be (x, y, z), O is origin. Direction ratios of OP are, a = 0 - x b= 0 - y c = 0 - z \Rightarrow As given: a, b, c are equal \Rightarrow x = y = z \Rightarrow OP = (0x)2+(0y)2+(0z)2=3\sqrt{(0 -x)^2 + (0 - y)^2 + (0 -z)^2} = \sqrt{3} [OP=3][ \because \, OP = \sqrt{3} ] 3x2=33x2=3\Rightarrow \, \sqrt{3x^2} = \sqrt{3} \, \Rightarrow 3x^2 = 3 x2=1\Rightarrow \, x^2 = 1 x=±1\Rightarrow x = \pm 1 x=1,y=1,z=1\Rightarrow x = - 1, y = - 1, z = -1 or x=1,y=1,z=1x = 1, y = 1, z =1 \therefore Coordinates of P = (- 1, - 1, - 1) is given in the choice.