Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

The direction ratios of a normal to the plane through (1,0,0),(0,1,0) (1, 0, 0), (0, 1, 0) which makes angles of π4\frac{\pi}{4} with the plane x+y=3x + y = 3 are

A

<1,2,1><1,\sqrt 2,1 >

B

<1,1,2><1,1,\sqrt 2>

C

< 1, 1, 2 >

D

<2,1,1>< \sqrt{2},1,\,1>

Answer

<1,1,2><1,1,\sqrt 2>

Explanation

Solution

Any plane through (1,0,0)(1, 0, 0) is a(x1)+b(y0)+c(z0)a(x - 1) + b (y - 0) + c (z - 0) = 0 ....(1) It contains (0, 1, 0) if - a + b = 0 ....(2) Also (1) makes and angle of π4\frac{\pi}{4} with the plane x+y=3x + y = 3 \therefore cosπ4=a+ba2+b2+c21+1\frac{\pi}{4} = \frac{a + b}{\sqrt{a^2 + b^2 + c^2} \sqrt{1+1}} \Rightarrow (a+b)2=a2+b2+c2(a + b)^2 = a^2 + b^2 + c^2 \Rightarrow 2ab=c22ab = c^2 \Rightarrow 2a2=c22a^2 = c^2 [a=b \because \, a = b from (2)] \Rightarrow c=2ac = \sqrt{2} a a:b:c=a:a:2a=1:1:2\therefore \, a : b : c = a : a : \sqrt{2} a = 1 : 1 : \sqrt{2} Hence reqd. direction ratios are < 1, 1, 2\sqrt{2} >.