Solveeit Logo

Question

Question: The direction ratio of the line which is perpendicular to the lines \(\frac { x - 7 } { 2 } = \frac...

The direction ratio of the line which is perpendicular to the lines x72=y+173=z61\frac { x - 7 } { 2 } = \frac { y + 17 } { - 3 } = \frac { z - 6 } { 1 } and x+51=y+32=z42\frac { x + 5 } { 1 } = \frac { y + 3 } { 2 } = \frac { z - 4 } { - 2 } are

A

< 4, 5, 7 >

B

< 4, –5, 7 >

C

< 4, –5, –7 >

D

< –4, 5, 7 >

Answer

< 4, 5, 7 >

Explanation

Solution

Let d.r.’s of line be l, m, n.

∵ line is perpendicular to given line

2l3m+n=02 l - 3 m + n = 0 ……(i)

l+2m2n=0l + 2 m - 2 n = 0 ……(ii)

From equation (i) and (ii)

l62=m1+4=n4+3\frac { l } { 6 - 2 } = \frac { m } { 1 + 4 } = \frac { n } { 4 + 3 } or l4=m5=n7\frac { l } { 4 } = \frac { m } { 5 } = \frac { n } { 7 }.

Hence, d.r.’s of line (< 4, 5, 7 >)