Solveeit Logo

Question

Question: The direction cosines of the resultant of the vectors \(\mathbf{r}.(\mathbf{i} - 2\mathbf{j} + 4\mat...

The direction cosines of the resultant of the vectors r.(i2j+4k)=9\mathbf{r}.(\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) = 9 (i+j+k),( - \mathbf{i} + \mathbf{j} + \mathbf{k}), (ij+k)(\mathbf{i} - \mathbf{j} + \mathbf{k}) and (i+jk),(\mathbf{i} + \mathbf{j} - \mathbf{k}), are

A

(12,13,16)\left( \frac{1}{\sqrt{2}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{6}} \right)

B

(16,16,16)\left( \frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}} \right)

C

(16,16,16)\left( - \frac{1}{\sqrt{6}}, - \frac{1}{\sqrt{6}}, - \frac{1}{\sqrt{6}} \right)

D

(13,13,13)\left( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \right)

Answer

(13,13,13)\left( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \right)

Explanation

Solution

Resultant vector =2i+2j+2k.= 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}.

Direction cosines are (13,13,13).\left( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \right).