Solveeit Logo

Question

Question: The direction cosines of the normal to the plane \(3 x + 4 y + 12 z = 52\) will be...

The direction cosines of the normal to the plane 3x+4y+12z=523 x + 4 y + 12 z = 52 will be

A

3, 4, 12

B

– 3, – 4, – 12

C

313,413,1213\frac { 3 } { 13 } , \frac { 4 } { 13 } , \frac { 12 } { 13 }

D

313,413,1213\frac { 3 } { \sqrt { 13 } } , \frac { 4 } { \sqrt { 13 } } , \frac { 12 } { \sqrt { 13 } }

Answer

313,413,1213\frac { 3 } { 13 } , \frac { 4 } { 13 } , \frac { 12 } { 13 }

Explanation

Solution

Direction ratio of normal to the plane

3x+4y+12z=523 x + 4 y + 12 z = 52 is 3, 4, 12.

\thereforeD.c's are (332+42+122,432+42+122,1232+42+122)\left( \frac { 3 } { \sqrt { 3 ^ { 2 } + 4 ^ { 2 } + 12 ^ { 2 } } } , \frac { 4 } { \sqrt { 3 ^ { 2 } + 4 ^ { 2 } + 12 ^ { 2 } } } , \frac { 12 } { \sqrt { 3 ^ { 2 } + 4 ^ { 2 } + 12 ^ { 2 } } } \right)

=(313,413,1213)= \left( \frac { 3 } { 13 } , \frac { 4 } { 13 } , \frac { 12 } { 13 } \right) .