Solveeit Logo

Question

Question: The direction cosines of the lines bisecting the angle between the lines whose direction cosines are...

The direction cosines of the lines bisecting the angle between the lines whose direction cosines are l1,m1,n1{l_1},{m_1},{n_1}and l2,m2,n2{l_2},{m_2},{n_2} and the angle between these lines is θ\theta , are
A) l1l2cosθ2,m1m2cosθ2,n1n2cosθ2\dfrac{{{l_1} - {l_2}}}{{\cos \dfrac{\theta }{2}}},\dfrac{{{m_1} - {m_2}}}{{\cos \dfrac{\theta }{2}}},\dfrac{{{n_1} - {n_2}}}{{\cos \dfrac{\theta }{2}}}
B) l1+l22cosθ2,m1+m22cosθ2,n1+n22cosθ2\dfrac{{{l_1} + {l_2}}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{{m_1} + {m_2}}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{{n_1} + {n_2}}}{{2\cos \dfrac{\theta }{2}}}
C) l1+l22sinθ2,m1+m22sinθ2,n1+n22sinθ2\dfrac{{{l_1} + {l_2}}}{{2\sin \dfrac{\theta }{2}}},\dfrac{{{m_1} + {m_2}}}{{2\sin \dfrac{\theta }{2}}},\dfrac{{{n_1} + {n_2}}}{{2\sin \dfrac{\theta }{2}}}
D) l1l22sinθ2,m1m22sinθ2,n1n22sinθ2\dfrac{{{l_1} - {l_2}}}{{2\sin \dfrac{\theta }{2}}},\dfrac{{{m_1} - {m_2}}}{{2\sin \dfrac{\theta }{2}}},\dfrac{{{n_1} - {n_2}}}{{2\sin \dfrac{\theta }{2}}}

Explanation

Solution

Draw the diagram for the given relation in the question. Use the formula for the dot product to find the relations between the angle bisector and the given vectors. Solve these relations to find the required answer.

Complete step by step solution:
Let us assume the line with the direction cosines l1,m1,n1{l_1},{m_1},{n_1} be v1{v_1} and the line with direction cosines l2,m2,n2{l_2},{m_2},{n_2} be v2{v_2}.
Let us assume the internal bisector of the lines v1{v_1}and v2{v_2}be represented by OAOAand have direction cosines as l,m,nl,m,n, and are the required direction cosines.

The dot product of two vectors is given by ABcosα\left| A \right|\left| B \right|\cos \alpha , where α\alpha is the angle between the vectors AA and BB.
The dot product of the line v1{v_1} with OAOA, we get
(l1i^+m1j^+n1k^)(li^+mj^+nk^)=(l12+m12+n12)(l2+m2+n2)cosθ2\left( {{l_1}\hat i + {m_1}\hat j + {n_1}\hat k} \right)\left( {l\hat i + m\hat j + n\hat k} \right) = \sqrt {\left( {{l_1}^2 + {m_1}^2 + {n_1}^2} \right)\left( {{l^2} + {m^2} + {n^2}} \right)} \cos \dfrac{\theta }{2}
Since we know that the sum of squares of the direction cosines of any vector is equal to 1.
Therefore, l12+m12+n12=1{l_1}^2 + {m_1}^2 + {n_1}^2 = 1and l2+m2+n2=1{l^2} + {m^2} + {n^2} = 1
Thus the equation (l1i^+m1j^+n1k^)(li^+mj^+nk^)=(l12+m12+n12)(l2+m2+n2)cosθ2\left( {{l_1}\hat i + {m_1}\hat j + {n_1}\hat k} \right)\left( {l\hat i + m\hat j + n\hat k} \right) = \sqrt {\left( {{l_1}^2 + {m_1}^2 + {n_1}^2} \right)\left( {{l^2} + {m^2} + {n^2}} \right)} \cos \dfrac{\theta }{2} is reduced to
(l1i^+m1j^+n1k^)(li^+mj^+nk^)=cosθ2\left( {{l_1}\hat i + {m_1}\hat j + {n_1}\hat k} \right)\left( {l\hat i + m\hat j + n\hat k} \right) = \cos \dfrac{\theta }{2}
Upon simplifying, we get
ll1+mm1+nn1=cosθ2l{l_1} + m{m_1} + n{n_1} = \cos \dfrac{\theta }{2}
Similarly, for dot product for v2{v_2} and OAOA, we get
ll2+mm2+nn2=cosθ2l{l_2} + m{m_2} + n{n_2} = \cos \dfrac{\theta }{2}
Adding the equations ll1+mm1+nn1=cosθ2l{l_1} + m{m_1} + n{n_1} = \cos \dfrac{\theta }{2} and ll2+mm2+nn2=cosθ2l{l_2} + m{m_2} + n{n_2} = \cos \dfrac{\theta }{2}, we get
ll2+mm2+nn2+ll1+mm1+nn1=cosθ2+cosθ2l{l_2} + m{m_2} + n{n_2} + l{l_1} + m{m_1} + n{n_1} = \cos \dfrac{\theta }{2} + \cos \dfrac{\theta }{2}
Upon simplifying, we get
2cosθ2=l(l1+l2)+m(m1+m2)+n(n1+n2) 1=l(l1+l2)2cosθ2+m(m1+m2)2cosθ2+n(n1+n2)2cosθ2 cos0=l(l1+l2)2cosθ2+m(m1+m2)2cosθ2+n(n1+n2)2cosθ2  2\cos \dfrac{\theta }{2} = l\left( {{l_1} + {l_2}} \right) + m\left( {{m_1} + {m_2}} \right) + n\left( {{n_1} + {n_2}} \right) \\\ 1 = \dfrac{{l\left( {{l_1} + {l_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} + \dfrac{{m\left( {{m_1} + {m_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} + \dfrac{{n\left( {{n_1} + {n_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} \\\ \cos 0 = \dfrac{{l\left( {{l_1} + {l_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} + \dfrac{{m\left( {{m_1} + {m_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} + \dfrac{{n\left( {{n_1} + {n_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} \\\
The above expression is equivalent for the dot product of the vectors OAOAwith direction cosines l,m,nl,m,n and vector with direction cosines (l1+l2)2cosθ2,(m1+m2)2cosθ2,(n1+n2)2cosθ2\dfrac{{\left( {{l_1} + {l_2}} \right)}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{\left( {{m_1} + {m_2}} \right)}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{\left( {{n_1} + {n_2}} \right)}}{{2\cos \dfrac{\theta }{2}}}, with angle between them being 0.
Since the angle between the above two mentioned vectors is 0, they coincide.
Thus (l1+l2)2cosθ2,(m1+m2)2cosθ2,(n1+n2)2cosθ2\dfrac{{\left( {{l_1} + {l_2}} \right)}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{\left( {{m_1} + {m_2}} \right)}}{{2\cos \dfrac{\theta }{2}}},\dfrac{{\left( {{n_1} + {n_2}} \right)}}{{2\cos \dfrac{\theta }{2}}} are the direction cosines of the required vector.

Therefore, option B is the correct answer.

Note: The dot product of two vectors is given by ABcosα\left| A \right|\left| B \right|\cos \alpha , where α\alpha is the angle between the vectors AA and BB. A visual representation of the scenario will help to formulate the equations easily. The direction cosines of any line in a three-dimensional plane denotes the cosine of the angle that is made by the line with the x,yx,y and zz axes. The sum of squares of the direction cosines is equal to 1.