Solveeit Logo

Question

Question: The direction cosines of the line \(\frac { 3 x + 1 } { - 3 } = \frac { 3 y + 2 } { 6 } = \frac { z ...

The direction cosines of the line 3x+13=3y+26=z1\frac { 3 x + 1 } { - 3 } = \frac { 3 y + 2 } { 6 } = \frac { z } { - 1 } are

A

(13,23,0)\left( \frac { 1 } { 3 } , \frac { 2 } { 3 } , 0 \right)

B

(1,23,1)\left( - 1 , \frac { 2 } { 3 } , 1 \right)

C

(12,1,12)\left( - \frac { 1 } { 2 } , 1 , - \frac { 1 } { 2 } \right)

D

(16,26,16)\left( - \frac { 1 } { \sqrt { 6 } } , \frac { 2 } { \sqrt { 6 } } , - \frac { 1 } { \sqrt { 6 } } \right)

Answer

(16,26,16)\left( - \frac { 1 } { \sqrt { 6 } } , \frac { 2 } { \sqrt { 6 } } , - \frac { 1 } { \sqrt { 6 } } \right)

Explanation

Solution

Change the given equation in standard form, we get,

x+131=y+232=z1\frac { x + \frac { 1 } { 3 } } { - 1 } = \frac { y + \frac { 2 } { 3 } } { 2 } = \frac { z } { - 1 }

So direction cosine are,(16,26,16)\left( \frac { - 1 } { \sqrt { 6 } } , \frac { 2 } { \sqrt { 6 } } , \frac { - 1 } { \sqrt { 6 } } \right).