Solveeit Logo

Question

Question: The direction cosines of a line satisfy the relation l(l + m) = n, mn + nl + lm = 0. The value of ...

The direction cosines of a line satisfy the relation l(l + m)

= n, mn + nl + lm = 0.

The value of l, for which the two lines are perpendicular to each other is-

A

1

B

2

C

1/2

D

None of these

Answer

2

Explanation

Solution

For l = –m +, the second relation gives

mn + n (m+nλ)+m(m+nλ)\left( - \mathrm { m } + \frac { \mathrm { n } } { \lambda } \right) + \mathrm { m } \left( - \mathrm { m } + \frac { \mathrm { n } } { \lambda } \right)= 0

or n2 + mn – lm2 = 0 ̃n2 m2+nm\frac { \mathrm { n } ^ { 2 } } { \mathrm {~m} ^ { 2 } } + \frac { \mathrm { n } } { \mathrm { m } }– l = 0.

If n1 m1\frac { \mathrm { n } _ { 1 } } { \mathrm {~m} _ { 1 } }, n2 m2\frac { \mathrm { n } _ { 2 } } { \mathrm {~m} _ { 2 } }are its roots then n1n2 m1 m2\frac { \mathrm { n } _ { 1 } \mathrm { n } _ { 2 } } { \mathrm {~m} _ { 1 } \mathrm {~m} _ { 2 } }= – l

̃

Since the lines are perpendicular –1 –1 + l = 0