Solveeit Logo

Question

Mathematics Question on Plane

The direction cosines of a line passing through two points P(x1,y1,z1)P(x_1, y_1, z_1) and Q(x2,y2,z2)Q(x_2, y_2, z_2) are

A

(x2x1)\left(x_{2} - x_{1}\right), (y2y1)\left(y_{2} - y_{1}\right), (z2z1)\left(z_{2} - z_{1}\right)

B

(x2+x1)\left(x_{2} + x_{1}\right), (y2+y1)\left(y_{2} + y_{1}\right), (z2+z1)\left(z_{2} + z_{1}\right)

C

x2x1PQ\frac{x_{2}-x_{1}}{PQ}, y2y1PQ\frac{y_{2}-y_{1}}{PQ}, z2z1PQ\frac{z_{2}-z_{1}}{PQ}

D

x2+x1PQ\frac{x_{2}+x_{1}}{PQ}, y2+y1PQ\frac{y_{2}+y_{1}}{PQ}, z2+z1PQ\frac{z_{2}+z_{1}}{PQ}

Answer

x2x1PQ\frac{x_{2}-x_{1}}{PQ}, y2y1PQ\frac{y_{2}-y_{1}}{PQ}, z2z1PQ\frac{z_{2}-z_{1}}{PQ}

Explanation

Solution

P(x1,y1,z1)P\left(x_{1}, y_{1}, z_{1}\right) and Q(x2,y2,z2)Q\left(x_{2}, y_{2}, z_{2}\right) \therefore Direction ratios of line PQ=(x2x1,y2y1,z2z1)PQ=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right) \Rightarrow direction cosine of PQ=PQ = [x2x1(x2x1)2+(y2y1)2+(z2z1)2\bigg[\frac{x_{2}-x_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}, y2y1(x2x1)2+(y2y1)2+(z2z1)2\frac{y_{2}-y_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}, z2z1(x2x1)2+(y2y1)2+(z2z1)2]\frac{z_{2}-z_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}\bigg] =[x2x1PQ,y2y1PQ,z2z1PQ]=\left[\frac{x_{2}-x_{1}}{PQ}, \frac{y_{2}-y_{1}}{PQ}, \frac{z_{2}-z_{1}}{PQ}\right] where PQ=(x2x1)2+(y2y1)2+(z2z1)2PQ=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}