Question
Mathematics Question on Plane
The direction cosines of a line passing through two points P(x1,y1,z1) and Q(x2,y2,z2) are
A
(x2−x1), (y2−y1), (z2−z1)
B
(x2+x1), (y2+y1), (z2+z1)
C
PQx2−x1, PQy2−y1, PQz2−z1
D
PQx2+x1, PQy2+y1, PQz2+z1
Answer
PQx2−x1, PQy2−y1, PQz2−z1
Explanation
Solution
P(x1,y1,z1) and Q(x2,y2,z2) ∴ Direction ratios of line PQ=(x2−x1,y2−y1,z2−z1) ⇒ direction cosine of PQ= [(x2−x1)2+(y2−y1)2+(z2−z1)2x2−x1, (x2−x1)2+(y2−y1)2+(z2−z1)2y2−y1, (x2−x1)2+(y2−y1)2+(z2−z1)2z2−z1] =[PQx2−x1,PQy2−y1,PQz2−z1] where PQ=(x2−x1)2+(y2−y1)2+(z2−z1)2