Solveeit Logo

Question

Question: The direction cosines of a line equally inclined to three mutually perpendicular lines having direct...

The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l1,m1,n1;l2,m2,n2l _ { 1 } , m _ { 1 } , n _ { 1 } ; l _ { 2 } , m _ { 2 } , n _ { 2 } and l3,m3,n3l _ { 3 } , m _ { 3 } , n _ { 3 } are

A

l1+l2+l3,m1+m2+m3,n1+n2+n3l _ { 1 } + l _ { 2 } + l _ { 3 } , m _ { 1 } + m _ { 2 } + m _ { 3 } , n _ { 1 } + n _ { 2 } + n _ { 3 }

B

l1+l2+l33,m1+m2+m33,n1+n2+n33\frac { l _ { 1 } + l _ { 2 } + l _ { 3 } } { \sqrt { 3 } } , \frac { m _ { 1 } + m _ { 2 } + m _ { 3 } } { \sqrt { 3 } } , \frac { n _ { 1 } + n _ { 2 } + n _ { 3 } } { \sqrt { 3 } }

C

l1+l2+l33,m1+m2+m33,n1+n2+n33\frac { l _ { 1 } + l _ { 2 } + l _ { 3 } } { 3 } , \frac { m _ { 1 } + m _ { 2 } + m _ { 3 } } { 3 } , \frac { n _ { 1 } + n _ { 2 } + n _ { 3 } } { 3 }

D

None of these

Answer

l1+l2+l33,m1+m2+m33,n1+n2+n33\frac { l _ { 1 } + l _ { 2 } + l _ { 3 } } { \sqrt { 3 } } , \frac { m _ { 1 } + m _ { 2 } + m _ { 3 } } { \sqrt { 3 } } , \frac { n _ { 1 } + n _ { 2 } + n _ { 3 } } { \sqrt { 3 } }

Explanation

Solution

Since the three lines are mutually perpendicular,

\therefore l1l2+m1m2+n1n2=0l _ { 1 } l _ { 2 } + m _ { 1 } m _ { 2 } + n _ { 1 } n _ { 2 } = 0

l2l3+m2m3+n2n3=0l _ { 2 } l _ { 3 } + m _ { 2 } m _ { 3 } + n _ { 2 } n _ { 3 } = 0

l3l1+m3m1+n3n1=0l _ { 3 } l _ { 1 } + m _ { 3 } m _ { 1 } + n _ { 3 } n _ { 1 } = 0

Also,l12+m12+n12=1,l22+m22+n22=1,l32+m32+n32=1l _ { 1 } ^ { 2 } + m _ { 1 } ^ { 2 } + n _ { 1 } ^ { 2 } = 1 , l _ { 2 } ^ { 2 } + m _ { 2 } ^ { 2 } + n _ { 2 } ^ { 2 } = 1 , l _ { 3 } ^ { 2 } + m _ { 3 } ^ { 2 } + n _ { 3 } ^ { 2 } = 1

Now, (l1+l2+l3)2+(m1+m2+m3)2+(n1+n2+n3)2\left( l _ { 1 } + l _ { 2 } + l _ { 3 } \right) ^ { 2 } + \left( m _ { 1 } + m _ { 2 } + m _ { 3 } \right) ^ { 2 } + \left( n _ { 1 } + n _ { 2 } + n _ { 3 } \right) ^ { 2 }

= (l12+m12+n12)+(l22+m22+n22)+(l32+m32+n32)\left( l _ { 1 } ^ { 2 } + m _ { 1 } ^ { 2 } + n _ { 1 } ^ { 2 } \right) + \left( l _ { 2 } ^ { 2 } + m _ { 2 } ^ { 2 } + n _ { 2 } ^ { 2 } \right) + \left( l _ { 3 } ^ { 2 } + m _ { 3 } ^ { 2 } + n _ { 3 } ^ { 2 } \right)

+ 2(l1l2+m1m2+n1n2)+2(l2l3+m2m3+n2n3)2 \left( l _ { 1 } l _ { 2 } + m _ { 1 } m _ { 2 } + n _ { 1 } n _ { 2 } \right) + 2 \left( l _ { 2 } l _ { 3 } + m _ { 2 } m _ { 3 } + n _ { 2 } n _ { 3 } \right)

+2(l3l1+m3m1+n3n1)+ 2 \left( l _ { 3 } l _ { 1 } + m _ { 3 } m _ { 1 } + n _ { 3 } n _ { 1 } \right) = 3

(l1+l2+l3)2+(m1+m2+m3)2+(n1+n2+n3)2=3\left( l _ { 1 } + l _ { 2 } + l _ { 3 } \right) ^ { 2 } + \left( m _ { 1 } + m _ { 2 } + m _ { 3 } \right) ^ { 2 } + \left( n _ { 1 } + n _ { 2 } + n _ { 3 } \right) ^ { 2 } = 3

Hence, direction cosines of required line are :

(l1+l2+l33,m1+m2+m33,n1+n2+n33)\left( \frac { l _ { 1 } + l _ { 2 } + l _ { 3 } } { \sqrt { 3 } } , \frac { m _ { 1 } + m _ { 2 } + m _ { 3 } } { \sqrt { 3 } } , \frac { n _ { 1 } + n _ { 2 } + n _ { 3 } } { \sqrt { 3 } } \right)

Note: Students should remember it as a fact.