Solveeit Logo

Question

Mathematics Question on Plane

The direction cosines l, m, n, of one of the two lines connected by the relations l5m+3n=0,7l2+5m23n2=0l -5m+ 3n = 0, 7l^2 + 5m^2 -3n^2 = 0 are

A

[114,214,314] \left[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]

B

[114,214,314] \left[\frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]

C

[114,214,314] \left[\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]

D

[114,214,314] \left[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right]

Answer

[114,214,314] \left[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]

Explanation

Solution

From the first relation, l=5m3nl = 5m - 3n. Putting this value of l in second relation 7(5m3n)2+5m23n2=07\left(5m-3n\right)^{2} + 5m^{2} - 3n^{2} = 0 180m2210mn+60n2=0\Rightarrow 180m^{2} - 210mn + 60n^{2} = 0 or 6m27mn+2n2=06m^{2} - 7mn + 2n^{2} = 0 Note that it, being quadratic in m, n, gives two sets of values of m, n, and hence gives the d.r.s. of two lines. Now, factorising it, we get 6m23mn+4mn+2n2=06m^{2} - 3mn + 4mn +2n^{2} = 0 or (2mn)(3m2n)=0\left(2m-n\right)\left(3m-2n\right) = 0 either2mn=0\Rightarrow either 2m - n = 0, or 3m2n=03m - 2n = 0 Taking 2mn=02m - n = 0 we get 2m=n2m = n. Also putting m=n/2m = n/2 in l=5m3nl = 5m - 3n, we get l=(5n/2)3nl=n/2n=2ll = \left(5n/2\right) - 3n \Rightarrow l = - n/2 \Rightarrow n = - 2l Thus, we get, 2l=2m=n-2l = 2m = n\quad or l1=m1=n2\frac{l}{-1} = \frac{m}{1} = \frac{n}{2} \Rightarrow d.r.s. of one line are 1,1,2-1, 1, 2. Hence, the d,c,s. of one line are [16,16,26]\left[\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right] or [16,16,26]\left[\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right] Taking 3m2n=03m - 2n = 0, we get 3m=2n3m = 2n or m=2n3.m = \frac{2n}{3}. Putting this value in l=5m3nl = 5m - 3n, we obtain l=5×2n33n=n2l = 5\times \frac{2n}{3} - 3n = \frac{n}{2} or n=3ln = 3l Thus 3l=3m2=nl1=m2=n33l = \frac{3m}{2} = n \Rightarrow \frac{l}{1} = \frac{m}{2} = \frac{n}{3} \Rightarrow the d.r? or [114,214,314]\left[\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right]